Workshop on Data Mining for Counter

Terrorism and Security

May 3, 2003
Cathedral Hill Hotel
San Francisco, CA

To be Held in Conjunction with the
Third SIAM International Conference on Data Mining

(SDM 2003)

Theme Statement

The tragedy of September 11 had immeasurable and permanent effects on the United
States and the rest of the world and brought issues of security and defense to the
forefront. To help prevent such disasters, a successful security program would include
provisions to secure borders, the transportation sector, and critical infrastructure. A
critical enabler of such a program would be the ability to synthesize and analyze data
from multiple sources.

The purpose of this workshop is to discuss ways in which data mining and machine
learning can be used to analyze data from numerous sources of high-complexity for the
purpose of preventing future terrorist activity. This is inherently a multidisciplinary
activity, drawing from areas such as intelligence, international relations, and security
methodology. From the data mining and machine-learning world this activity draws from
scalable text mining, data fusion, data visualization, data warehousing methods. Papers
in these areas with clear application to the issues of counter terrorism are particularly
solicited.

Topics of interest include:

e Methods to integrate heterogeneous data sources, such as text,
internet, video, audio, biometrics, and speech

Scalable methods to warehouse disparate data sources
Identifying trends in singular or group activities

Pattern recognition for scene and person identification

Data mining in the field of aviation security, port security, bio-
security

Data mining on the web for terrorist trend detection.

Program Committee

Dorothy Denning, Georgetown University

Jiawei Han, University of Illinois, Urbana-Champaign
John James, West Point

Anupam Joshi, University of Maryland, Baltimore County
Steve Kornguth, University of Texas, Austin

Rick Lawrence, IBM TJ Watson Laboratory

Nagiza Samatova, Oak Ridge National Laboratory

Ashok Srivastava (Chair), NASA Ames Research Center
Jeff Ullman, Stanford University

Organizing Committee

Ashok N. Srivastava (Chair), NASA Ames Research Center

Daniel Barbara, George Mason University

Hillol Kargupta, University of Maryland Baltimore County

Vipin Kumar, University of Minnesota and Army High Performance Computing
Research Center

Keynote Speaker
Professor David Jensen, University of Massachusettes Amherst

David Jensen is Research Assistant Professor of Computer Science and Director of the
Knowledge Discovery Laboratory at the University of Massachusetts Amherst. He
received his Doctor of Science degree from Washington University in St. Louis in 1992.
From 1991 to 1995, Dr. Jensen was an analyst with the Office of Technology
Assessment, an agency of the United States Congress. While at OTA, he helped produce
the first major assessment of data mining technologies for detecting money laundering.
Dr. Jensen's current research focuses on relational knowledge discovery, with
applications in intelligence analysis, web mining, and fraud detection. Dr. Jensen serves
on program committees for the International Conference on Knowledge Discovery and
Data Mining (KDD) and The International Conference on Machine Learning (ICML).
He is a member of the American Association for Artificial Intelligence, The ACM
Special Interest Group on Knowledge Discovery and Data Mining, and Computer
Professionals for Social Responsibility.

Scalable Data Management Alternatives to Support Data Mining
Heterogeneous Logs for Computer Network Security

William Yurcik * James Barlow T

Xiaoxin Yin |l Mike Haberman **

Abstract

Today no commercial technology exists for fusing audit log
data from heterogeneous sources into a single framework for
assessing suspicious computer network behavior. Identifying
data relationships and patterns from heterogeneous sources
on an instrumented network provides situational awareness
and decreases the impact of accidental or malicious system
failures that may have large impacts if they would appear.
In this paper we compare different data management alter-
natives for accessing heterogeneous data sources by a data
mining application and provide an overview of implemen-
tations under development at NCSA. We conclude that at
this time there is not a consensus best alternative but each
approach has significant tradeoffs that should become more
accurately quantifiable as data mining projects for computer
network security are implemented

Keywords: intrusion detection,
data warehouse

data management,

1 Introduction

Computer network security is a continuously escalating
battle. Protectors harden operating systems, networks,
and applications while attackers find vulnerabilities in
any of these areas. However, there are four fundamental
asymmetries that favor attackers in this battle: (1) an
Internet connection provides worldwide access for all
attackers directly to any machine, (2) while protectors
must patch all vulnerabilities, an attacker must only
find and exploit one vulnerability (all it takes is one
unpatched vulnerability to bring down a system), (3)
all it takes is one attacker to find and develop exploits
for unpatched vulnerabilities since exploits are shared

" *National Center for Supercomputing Applications (NCSA)
fNational Center for Supercomputing Applications (NCSA)
iDept. of Computer Science, Univ. of Illinois - UC
$Dept. of Computer Science, Univ. of Illinois - UC
TDept. of Computer Science, Univ. of Illinois - UC
lDept. of Computer Science, Univ. of Illinois - UC

**National Center for Supercomputing Applications (NCSA)
ttNational Center for Supercomputing Applications (NCSA)
#¥National Center for Supercomputing Applications (NCSA)

Yuanyan Zhou *

Hrishikesh Raje ¥ Yifan Li ¥

Dora Cai 1 Duane Searsmith

between attackers, and (4) the element of surprise - new
undocumented attacks (¢ days) are being continuously
developed and used at opportune times and situations
designed to maximize attack effectiveness.

Once this battle had low stakes, but since 9/11
the stakes have risen to include consideration of cyber-
terrorists — terrorists who target underlying computer-
based systems controlling critical infrastructures such as
stock markets, electric power grid, various transporta-
tion systems, etc. While a major attack on a com-
puter system supporting a critical infrastructure has not
yet occurred!, the possibility of human casualties and
economic disruption makes this an important topic for
study.

One counter-terrorism strategy against attacks on
networked computer systems is to devise better detec-
tion tools. While it is difficult (and likely impossible) to
harden any networked system against all attacks, most
attacks do not occur instantaneously but rather have a
definite sequence of events (from reconnaissance to sys-
tem changes upon compromise) that can be identified
and tracked resulting in either the prevention of an at-
tack in real-time or reacting to an attack sooner after it
has occurred. Attackers realize this and try to obfuscate
their trail from intrusion detection systems (IDSs) with
time (both very fast and very slow), deception, levels of
indirection, etc. and in many cases this has been suc-
cessful. The application of data mining to this problem
is a higher-level attempt to discover semantic connec-
tions between attacker traces in computer network data
that intrusion detection systems miss.

Commonly understood prerequisite infrastructure
to facilitate data mining includes mass storage, pro-
cessing power, data mining software, and a database
management system. However, a last additional, of-
ten ignored, prerequisite is a scalable data management

strategy. There has been little work focusing specif-
TTsolated minor attacks have occurred such as distributed

denial-of-service attacks against multiple companies, website de-
facements, and spam attacks but the authors do not feel these
attacks rise to the level of a major attack.

ically on data management for data mining, research
assumes data is available a priori to a data mining appli-
cation and instead focuses on developing more effective
data mining algorithms.? However, practical experience
shows that data management for data mining can be al-
most intractable especially for a high volume application
domain such as computer network security.

Audit logs used to monitor computer network secu-
rity scale with the size of the instrumented network but
are typically in the GB range per day for medium size
organizations. The scope of the data management prob-
lem becomes clear when considering multiple audit logs
remotely scattered across a network. There are several
data management alternatives that may offer possible
solutions but all have current technical drawbacks that
must first be overcome.

In this paper we focus specifically on scalable data
management for data mining in the domain of computer
network security by comparing schemes from the litera-
ture and sharing practical implementation experience.
The remainder of this paper is organized as follows:
Section 2 reviews previous work in data management
for IDSs. Section 3 summarizes audit logs for pro-
viding computer network security. Section 4 provides
an overview of implementations under development at
NCSA. We end with a summary and conclusions in Sec-
tion 5.

2 Literature Review

In terms of data management, we distinguish three dif-
ferent states: (1) data collection, (2) data retrieval,
and (3) data processing. For the purposes of this pa-
per, _data collection refers to network-based or host-
based sensors generating audit logs to record activity,
data retrieval traditionally refers to the virtual move-
ment of log data to serve as input to a data mining
application but we also use this term to encompass the
virtual movement of output from remote data mining
applications back to an operator, and data processing
refers to the use of data mining algorithms to discover
computer network attacks within logs.

IDS data management literature can be grouped
into three general approaches: (1) centralized, (2) dis-
tributed, and (3) hierarchical. A _centralized IDS fo-
cuses on processing all data at central depository. A
distributed IDS focuses on the simultaneous (parallel)
processing of data at multiple remote sources such that
processing is loosely coupled (autonomous) with min-

2a similar realization about the often ignored but prerequisite

capability of data management has also occurred in the sister area
of sensor networks where sensors are small, low-power wireless
devices sensing the environment [12]

imum data dependency [23]. A _hierarchical IDS ag-
gregates data at each of multiple layers in one direction
from the raw source data up to the human operator with
maximum data dependency (the input of each layer is
directly dependent upon output of its adjacent lower
layer).

Centralized approaches has traditionally relied
upon centralized database systems but the only require-
ment is for all the data to be accessible for processing at
a single virtual location — data can also be stored in se-
quential or specialized file formats outside of a database
system.

In [1], the data is processed in a centralized fashion.
The transaction information is extracted from the web
servers, after which it is packed into some format to be
sent to a separate host for further analysis. The same
method is used in [18], where raw audit data is collected
by sensors and shipped to the modeling engine. In [17],
correlated logs from separate system components are
fed to a database where data mining techniques are
applied. Both systems described in [26] and [22] perform
centralized operations on the audit logs aggregated from
distributed data sources. A centralized approach for
network traffic analysis is proposed in [8], where all
traffic information is archived to a central host.

There is a hybrid variation to the centralized ap-
proach using a single layer of aggregation. Data is pre-
processed remotely at one lower layer of sensors before
the results (e. g., alerts) are delivered to a central place
(e g., a database), where further operations are carried
out. If more than one layer is involved then this hybrid
variation of the centralized approach becomes what we
define later as a hierarchical approach. Quite a few sys-
tems take advantage of this hybrid variation we will refer
to as the centralized-aggregation approach. In [3], local
processing is done at distributed sensors in network-
centric IP fusion systems and resultant output data is
sent to a host for fusion. The fusion system introduced
in [10] consists of the IDSs that produce the alerts, and
a database as a central repository where the alerts are
stored. In [25], alerts generated by heterogeneous sen-
sors are fused at a central location to produce meta
alerts. In similar papers, data correlation is completed
at a separate host where alerts coming from individual
sensors are assembled [19, 9, 21].

According to [4, 24], research interest in distributed
and hierarchical approaches has increased because they
share workload across different nodes and thus improve
the data management scalability of intrusion detection
systems. Next we introduce representative approaches
for both or these approaches.

Distributed approaches typically use autonomous
agents which can be characterized by processing inde-

pendent of any centralized coordination and peer com-
munication without any intermediaries. [13] presents
one such representative distributed architecture that
contains autonomous agents and no central repository.
Each agent collects certain information from sets of
hosts and it communicates interests (specifications of
data it wants) to other agents. Different interests are
sent to different agents or agent groups. If an agent gets
data that is required by another agent, it sends data to
that agent through a tree-like structure. And each agent
generates alerts based on the data it has gathered.

[16] proposes a distributed approach for intrusion
detection based on mobile agents. In this approach
attack patterns are sent to mobile agents through a
language called EQL. The agents detect local attacks,
and communicate with each other to detect attacks
involving multiple hosts.

[2] introduces several distributed approaches based
on a publish-subscribe architecture. Each agent gener-
ates alerts from a single host and posts the alerts (or
other information) at a central database. Each agent
then retrieves information from the central database
and makes actions.

The focus of hierarchical approaches is to decrease
large volumes of data by using aggregation at multiple
layers. This allows an operator to abstract away large
volumes of data noise in order to facilitate discovering or
investigating suspicious activity in the remaining data.
Examples include aggregating the following groups of
data noise: normal activity, false positive alarms, or
multiple alarms from the same attack [6]. In this
approach, the view from each layer is only of its next
lower layer — there is no direct global view or direct
view of the original source data. Unlike distributed
approaches in which agent processing is autonomous,
some hierarchical approaches use agents that form a
multi-layer or tree-like structures but the processing is
tightly coupled with layered data dependency.

AAFID [4] is a typical hierarchical approach. The
AAFID architecture contains three layers of entities:
agents, transceivers and monitors. Each agent monitors
a certain aspect of a host. A transceiver is the external
interface of a host that controls agents, processes data
from them, and responds to commands issued by its
monitor. Monitors are high-level entities that control
transceivers from multiple hosts.

There are several other examples of hierarchical
approach to data management for IDSs. Both [15] and
[20] uses three-layer structures. The lowest layer collects
information from sensors and may generates alarms for
single hosts. The middle layer does correlation analysis
or aggregation to generate high-level information, which
is sent to the highest layer. The SHOMAR system

uses a different hierarchical approach [24]. SHOMAR
contains the following components: ID services, IDS
managers, certificate authority and capability manager.
An ID service is a sensor. Some ID services and an
IDS manager form an ID cluster. The IDS manager
collects information from every ID service in the cluster,
performs data aggregation, and sends aggregated data
to its parent. An IDS manager can be an ID service of
another IDS manager such that IDS managers typically
form tree-like structures. The other two components,
the certificate authority and capability manager, control
access to resources in the system. [11] uses a similar
hierarchical architecture for data management.

2.1 Tradeoff Discussion Data management
decision-making depends on project requirements,
available resources (equipment, expertise), and time
frame. However, there are general tradeoffs with each
approach that we discuss in this section.

A centralized approach using a database to support
data mining for heterogeneous logs has these advan-
tages:

o effective data sharing: combining log files with in-
dividually different formats into a common uniform
format. Users can also access the database either
locally or remotely.

o efficient data access: database systems utilize a
variety of sophisticated techniques to store and
retrieve data efficiently. Such techniques include
indexing, clustering, parallel processing, and query
optimization.

e high reliability and stability: after years of refine-
ment, database systems have become robust and
easy to manage

e improving scalability: database systems have been
used in many data intensive applications. A recent
research article has reported a 5TB database by
Oracle [14]

A distributed approach to support data mining for
heterogeneous logs has these advantages:

e processing at a level closest to the raw source
data which facilitates specialized algorithms at a
desirable levels of resolution

e superior fault tolerance

e dramatically reduced processing (per individual
machine) and network communication require-
ments (no concentrated congestion point)

e scalability to easily monitor new logs by adding
corresponding new agents

A hierarchical approach to support data mining for
heterogeneous logs has these advantages:

o flexibility in both number of levels and processing
at each level

e centralized management of different layers due to
data dependency

e reduced requirements for combining different raw
data formats, can be combined gradually by layers

o large centralized mass storage requirements shifted
to reduced and manageable distributed storage
requirements at each layer

e scalability with increased processing at individual
layers and/or increasing the number of levels

Table 1 compares the primary resources neces-
sary to implement the different approaches: process-
ing power in cycles for executing complex algorithms on
large data sets, network capacity in bandwidth for near-
real-time data retrieval, and large mass storage capabil-
ity for queuing source data before (data collection) and
after it is processed. There is one clear tradeoff: the cen-
tralized approach requires the most resources and the
distributed approach requires the least resources with
the hierarchical approaches in between.

Table 2 summarizes selected secondary criteria for
comparison assuming each approach is feasible given the
necessary resources. There are four clear tradeoffs: the
centralized approach has a single-point-of-failure while
the distributed approach can tolerant sensor/agent fail-
ures with minimal disruption, a uniform and complex
data format is necessary for schemes with relatively
concentrated processing, query flexibility is highest in
centralized schemes and low in distributed /hierarchical
schemes, and in terms of privacy centralized approaches
represent higher risk as a concentrated target and
larger compromise impact while the distributed ap-
proach presents multiple lower value targets with each
having lower compromise impacts.
3 Heterogeneous Computer Network Audit

Logs
A computer network contains a variety of different in-
frastructure devices each of which may be instrumented
to produce audit logs. Though it is possible to per-
form simplistic signature matching on streaming net-
work traffic in real time, it is impossible to analyze this
data in real-time, in a period of minutes the data size

becomes unmanageable. As a result most network anal-
ysis tools log the data for offline analysis. Although the
topic of computer network audit logs is broad, a topic
onto its own, we feel a brief introduction to some of the
different types of logs is important in order to better un-
derstand the data management issues surrounding using
these logs for IDSs or data mining.

We have made a point emphasizing data manage-
ment for heterogeneous audit logs. The fact that the
audit logs are different is significant because it pro-
motes multiple views for attack discovery, robustness
against attack, interoperability, extensibility, and flex-
ibility. However, heterogeneity also eliminates possi-
ble data management efficiencies that may be possible
from uniform record formats, uniform configurations,
and uniform control.

It is important to note that computer network
sensors generate streaming data and not batch log files.
However, processing streaming data for data mining
is an open research question beyond the scope of this
paper (although briefly mentioned in Section 4.3). We
create batch log files by collecting streaming data over
defined time periods.

One of the most common ways of collecting com-
puter network data into logs is the use of the tcp-
dump utility. This utility captures packet headers
passing through a network interface set in promiscuous
mode and displays binary traffic in a number of human-
readable formats.>

While TCPdump is a valuable tool, it focuses on the
TCP/IP suite of protocols. There are a large variety of
other utilities for “sniffing” raw packets of any protocol
from monitor points on a network. Referred to as
“sniffers”, the most effective programs are Ethereal
and the Sniffer from Network Associates although there
are many others.® As networks increasingly employ
“switch” technology, sniffers that rely on a shared
medium network (Ethernet) are being moved from
end systems to servers and routers. Sniffer logs are
uniquely valuable in discerning low-level attacks such
as abnormal traffic attacks (e.g. fragmentation) however
their scope is limited by their monitoring position within
a network.

NetFlow logs contain records of unidirectional
flows between computer ports across an instrumenta-
tion point on a network. These records can be exported
from routers or software such as ARGUS or NTOP.?
NetFlows are a rich source of information for traffic

3similar tools to tcpdump are Ipgrab and Iplog

4the word “sniffer” is a registered trademark of Network
Associates

5 ARGUS http://www.qosient.com/argus/
NTOP http://www.ntop.org

analysis consisting of some or all of the following de-
pending on version and configuration: IP address pairs
(source/destination), port pairs (source/destination),
protocol (TCP/UDP), packets per second, timestamps
(start/end and/or time duration), and byte counts
(Note: there are different versions of NetFlow software
that allow configuring for varying attribute resolution
including sampling).

Syslogs are an industry standard for capturing
information about networked devices by encoded mes-
sages by level (e.g. warning, error, emergencies) and
by facility (e.g. service areas such as printing, Email,
network). Syslog also functions as a distributed error
manager by forwarding log entries to other machines
for processing. In addition to pattern-matching sys-
log entries for known attack signatures, other examples
of suspicious activity requiring further investigation in-
clude critical events (system reboots), unsuccessful login
attempts, new account creation (especially with special
privileges), connections from the same external host to
many internals hosts on the same port (port scan), or
cessation of logging messages from a host (may indicate
the logging process has been deleted or a Trojan logging
process installed).

Workstation logs are standard utilities that keep
login/logout entries on a workstation’s local hard disk
(in addition to centrally maintained syslogs). Some ap-
plication software also maintain access logs. One such
example is the use of network-based ”license servers”.
Workstation logs are a standard function provided on
many operating systems but they are possible to dis-
able. Each workstation also maintains a log of mail
transactions originating from that workstation.

ARP cache at subnet routers and switches con-
tain cached tables of recent conversions from IP ad-
dresses to physical hardware addresses for lookup ef-
ficiency. The entries are of two types: dynamic en-
tries that are added/removed automatically over time
and static entries which remain in the cache until the
computer is restarted. Each dynamic ARP cache en-
try has a potential lifetime of between 2-10 minutes
(depending on operating system settings, new entries
are time-stamped) and a log of all entries can be cre-
ated over a specified time period. The ARP cache is
useful to determine static IP addresses; to identify un-
registered /unknown, misregistered (including malicious
spoofing), and misconfigured devices attached to a net-
work; identifying what IP address(es) a particular hard-
ware address is using; to debug if a particular device has
connectivity; tracking unsuccessful connection attempts
to devices that either are not currently on the network
or do not exist; and lastly “arp cache poisoning” at-
tacks against arp itself (the insertion of fabricated data).

This log capability is becoming more important with the
growth of wireless access points into networks.

Nameserver DNS cache contains mappings
between fully-qualified hostnames and corresponding IP
addresses (and corresponding name server hostnames
and nameserver IP addresses) based on recent requests
to other name servers. The amount of time a name
server retains cache data is controlled by the time-to-
live (TTL) for the data. These logs can be created
via periodic snap shots of the cache timed shorter than
the TTL to capture data before it expires. Host tables
(. rhosts and hosts.equiv) that map IP addresses to
hostnames also provides recent hostname-to-IP address
mapping information. DNS cache is most effective in
detecting IP/URL spoof attacks and malicious sniffing
(by identifying machines performing high volumes of
DNS queries with automated scripts).

Dial-up server logs maintain system accounting
records on who makes ingoing/outgoing network con-
nections to help identify suspicious activity ingoing or
outgoing at this access choke point.

Kerberos logs contain all instances of the use
of the kerberos authentication system in a network -
Kerberos tickets requested. This information can be
used to generate “login” graphs and determine who was
logged into a particular workstation at a particular time.

SNMP logs , referred to as management infor-
mation bases (MIBs), are databases of managed ob-
jects that store information about a wide variety of
network device attributes. The SNMP (Simple Net-
work Management Protocol) operator application in-
volves monitoring network devices via polls to network
device agents for specified MIB information or traps
from network device agents notifying the operator of
an event.

Routing table logs (e.g., inter-domain BGP,
intra-domain OSPF or RIP) provide information about
routing-based attacks ranging from: (1) individual mis-
behaving routers that drop/misroute packets or inject
disruptively large routing tables, to (2) the systemic
network-wide advertisement of false routing information
or the instability caused by the propagation of worms.
Global, local, or peer routing tables provide different
vantage points for analysis.®

Firewall logs are important in a recursive way, to
maintain the effectiveness of its internal rule set. A rule
set exactly specifies what traffic to permit/block — typi-
cally growing in number of rules beyond human compre-
hension. A firewall is a computer or group of computers
that interfaces between an internal network/computer

Sone example of routing table logging is the Routeviews

Project for BGP http://www.routeviews.org

and the Internet to enforce an organizational access con-
trol policy by processing packets/connections based on
the rule set.” Firewalls can be used to monitor both nor-
mal activity (types of services requested and used, com-
mon external IP addresses accessing internal services,
common access time patterns) and suspicious activity
(probes to ports with no authorized services, external-
to-internal flows with source internal IP addresses, out-
bound connections from uncharacteristic internal ma-
chines, and modification/disabling of the firewall rule
set). Border routers with the ability to add static routes
can serve a firewall function (NCSA does this)

Intrusion Detection System logs contain alerts
indicating specific attacks. Generally, while a firewall
has a proactive preventative focus, an IDS has a passive
reactive focus. IDSs can be categorized in two ways:
by sensor placement (network versus host) and by tech-
nique (signature versus anomaly), with all combinations
producing logs. Real-time IDSs have been plagued by
large log size, high false positive rates, and mimicry but
incremental improvements are increasing their effective-
ness for post-mortem forensics.

Mail logs maintain a log of completed trans-
actions (as well as a queue of pending mail) includ-
ing sender and recipient address, subject title, date
and time of transmission, and size of file.® Com-
mon tests include: total length of time spent receiv-
ing and sending Email and the number of Emails by
an entity (organization/group/individual) for period of
time (day/week/month), stratify Email by time (work
hours/off-hours) and common addresses, stratify size
and type of file attachments, internal and external
Email, and identifying dormant accounts.

Web server logs provide feedback on perfor-
mance. Weblogs provide detailed records of requests
to the webserver and statistical information about net-
work traffic. The web log record attributes include: the
source IP address from which a request was generated,
whether a requests is satisfied, a userid determined by
the HTTP authentication, a status code, and the size
of the object returned with each satisfied request.

Dynamic Host Configuration Protocol
(DHCP) server logs can be used to track unique IP
address assignments to devices as they join/leave a net-
work. DHCP servers manage two databases: (1) an Ad-
dress Pool database for holding IP addresses and other
network configurations and (2) a Binding database for
mappings between Ethernet addresses and an entry in
the Address Pool. Though best known for assigning dy-

This includes two general classes of firewalls: (1) Inter-

net /intranet firewalls (many variants) and (2) host-based firewalls
8 An organization should have a clear Email security policy
addressing privacy issues before data mining this content.

namic IP addresses, DHCP can also assign a dedicated
static address for a device that re-joins. On a network
that uses DHCP with dynamic addresses, maintaining
a log is absolutely necessary to be able to forensically
associate dynamically changing IP addresses to specific
devices/interfaces.

Scanning logs for defensive purposes are used
to perform risk management by tracking vulnerabilities
and notifying system administrators about potential
exploits and patches that need to be installed. However,
scanners are also the reconnaissance tool of choice
for attackers to identify target IP addresses, servers,
operating systems, and ports. Currently the four port
scanning tools that stand out are nmap, nessus, SAINT,
and the ISS scanner.

Other useful proprietary logs too specific to de-
scribe here include operating system kernel logs,
router traps, and application software logs. Fig-
ure 1 shows a distribution of security relevant attributes
across a selection of logs (although the individual at-
tributes are too small to be readable). Some of the at-
tributes may initially appear redundant since they are
contained in multiple logs but this overlap is vital to
enable event correlation between logs.

Figure 2 is a logical diagram of a centralized ap-
proach to the data management problem specific to the
computer network security domain. Data in multiple
types of logs may be retrieved by a centralized data
mining application over the network. The time dimen-
sion is implicitly shown with multiple logs under each
log type (NIDS is used as an example), with each log
containing data from a defined time period.

4 NCSA SIFT Data Management Efforts

In August 2002, NCSA embarked on a data mining for
computer network security project named SIFT (Secu-
rity Incident Fusion Tools). The goal of the project is
to fuse together many of the computer network audit
logs we have identified for security event knowledge dis-
covery.

As part of this effort we have already developed two
breakthrough frameworks for visualizing individual logs
across an entire IP address space (Class B address space
= 65,000 computers with each computer having 65,000
different ports). Although we have organizational mass
storage resources for data collection and high perfor-
mance local/grid cluster resources for data processing,
we have faced scalability challenges with data retrieval
for fusing heterogeneous logs — moving data from data
collection to data processing.

To appreciate the data retrieval for data mining
challenge we face, here are approximate figures for just
some of our log volumes:

e NetFlow Logs - 200M - 4GB/day
e Syslogs - 250 MB/day
e IDS logs - 1 GB/day

These log sizes come with a caveat that they vary
widely in size over time and are unique to our special
NCSA environment. The point is a comparison of the
log sizes relative to current data retrieval capabilities
(acknowledging data retrieval capabilities are temporal
and will change over time as technology evolves).

After surveying related work on data management
for data mining and not finding a consensus solution,
we embarked on four complementary efforts (see Figure
3). These four efforts map roughly to the approaches
we described in the literature review: (1) a central-
ized database approach, (2) a centralized-aggregation
middleware approach (to access log files at their orig-
inal location), (3) a centralized-aggregation intelligent
database approach (using DataSpace servers), and (4)
a distributed agent approach.

4.1 Centralized Data/Centralized Processing
Figure 4 gives an overview of an architecture that
employs a centralized database for unifying all the log
activities. It includes a model to correlate data from
multiple sources as it is collected, and to store only
the information relevant to the behavioral models in a
database format. A log from a sensor corresponds to a
table in the activity database, and an event is stored as
a row in the corresponding table. Correlations between
logs are expressed using relations. For example, suppose
a system call event from operating system is < Time-
Stamp, ProcessID, API-Name > , and a network TCP
packet event is < Time-Stamp, ProcessID, Packet-Size,
TCP-Flag, Src, Dst >. They are correlated to each
other if they have the same ProcessID and similar
Time-Stamp .

The primary advantage of this organization is that
it can easily interface to the activity miner and gener-
ate detection models. The database organization also
has the advantage of supporting various queries. For
example, when an anomaly is detected from mining the
system call activities, the IDS system can query the
activity database to see if there is any abnormal behav-
ior in the network activities in the corresponding time
range or by the corresponding processes. The IDS sys-
tem can also query any aggregated information such as:
the number of times a system call is made, or the aver-
age network traffic, or the highest busty network traffic,
or the time range most logins happen etc. Similar to
other centralized system, this approach provides a sim-
ple architecture, which is easy to implement and manage

comparing to the other approaches discussed in followed
subsections.

However, scalability is one of the primary challenges
in this architecture. If the system is running for a
long time or on a large-scale network, the database
size may increase to Giga or Tera-bytes. To reduce
the disk and memory footprint of the activity database,
it is necessary to compress old events and archive or
remove obsolete events. Moreover, stream-based data
mining techniques are necessary to analyze only recent
activities to generate model and detect intrusions. Time
and space overheads are another problem with this
approach. Since everything needs to be logged into this
centralized activity database, making it a bottleneck in
heavy loads.

To address these challenges, the activity log
database may require special DBMS management. Most
existing database servers such as IBM DB2, Microsoft
SQL Server and Oracle are tailored for on-line trans-
action processing applications or decision support sys-
tems, and thereby may not be suitable for managing ac-
tivity logs. Activity logs consist of time sequence data.
Each activity’s contribution to the model or the rule de-
cays with time (last year’s activities are less important
than this year’s activities). Therefore, old activities can
be archived to secondary storage to reduce the database
size and improve mining performance.

4.2 Distributed Data/Centralized Processing
Leaving raw data in its native format and original lo-
cation allows data to retain the highest resolution with
all its attributes without summarization or other lossy
compression to shrink size. This is especially important
for computer network security which requires a flexibil-
ity to ask hard to anticipate “what if” questions and
depend on rare events that may be lost via summariza-
tion or compression.

Additional advantages with not moving raw source
data from where it was initially created and leaving it
in its native format include: (1) eliminates intermediate
redundant storage and data consistency problems, (2)
data that is not needed for processing does not need to
be moved or reformatted, and (3) the responsibilities
for data collection and retrieval can be decoupled for
organization or technical efficiencies. The disadvantages
of keeping raw source data in its original location are:
(1) decoupling collection and retrieval means that when
data is eventually retrieved for data mining, detailed
knowledge of storage logistics is required, (2) each new
high-level query will require a new, potentially huge,
data retrieval (caching does may not help with such
large log sizes) and (3) there is less fault-tolerance due
to lack of redundant intermediate storage and thus more

dependence on system backups.

4.2.1 Middleware Mediation When trying to in-
corporate large amounts of data, from multiple sources,
for a processing task like data mining, it can be very
difficult to get the data you need when you need it.
One approach NCSA is taking uses "middleware” me-
diation as a means to access source data remaining at
its point of origination [5]. We use the term middleware
to describe a software layer in between applications and
network resources, specifically storage. Conceptually,
middleware acts a centralized manager mediating and
disassociating data processing from data collection — fa-
cilitating uniform access to heterogeneous logs based on
attributes rather than filenames or physical locations.
This approach benefits data management in the follow-
ing ways:

abstracting the data

Using a middleware approach to data access allows
data collection details to be abstracted from the data
processing task (data mining application) such that
high-level requests are transparently translated to low-
level file access operations. As shown in Figure 5, the
application does not have direct access to the data
types. To retrieve data, an operator or application
makes a high-level query to the middleware program
that then determines what data is required and where
the data is located. The data mining application or user
does not know where the source data is stored, how it
is stored, or in what format it is stored.

modularization

The middleware approach can also create a modular
method to data access such that audit logs in different
forms can be flexibly added and removed. This is
possible since there are a small number of ways to store
source data on the data collection machines, whether it
is flat files, databases, or some other method. This also
enables the use of reusable components for accessing
new data sources.

To be more specific on our efforts at NCSA, Figure
5 shows a high-level request from either the user or data
mining application sent to middleware. The middleware
then mediates the request in one of three ways: (1)
the middleware locates and then retrieves the exact log
file(s) based on filename schema, directory structure,
and desired time period (log files are created per log type
and time period), (2) the middleware redirects the query
to a central database corresponding to the log type
selected (each log type may have a different database),
or (3) the query is sent to an intelligent database server,
in our case a DataSpace server hosting a specific log,
which accepts complex queries for file attributes across
multiple log files via communications between servers

(explained in more detail in the next section).

A similar middleware approach focusing on network
performance is described in [7]. This paper presents the
Cichlid visualization tool that contains: (1) applications
specific code for sensors and (2) an application indepen-
dent visualization engine. The internal data represen-
tation is not attached to a particular application — user
requests go through middleware to find and retrieve the
corresponding data set.

4.2.2 DataSpace Servers The underlying data
management architecture should (A) extract only that
data which is currently requested for mining, (B) mini-
mize the time to deliver the data, (c) retrieve data trans-
parent from the physical aspects of storage. As we have
documented throughput the paper, it may not be advis-
able to store all data on a central server given the large
volumes. This lead to a search for an efficient way to
retrieve portions of a data set irrespective of size.

NCSA has decided to implement DataSpace servers
- an infrastructure for creating a data web (see Figure
6). Each DataSpace server keeps metadata about its
logs allowing Internet communication between servers.
This functionality represents logs as database tables by
splitting text into columns and tuples as defined by the
metadata. Also of interest are: (1) universal correlation
keys as primary indices for active querying, (2) the pre-
dictive scoring and update protocol (PSUP) for event-
driven real-time scoring and model development, and
(3) the DataSpace transfer protocol (DSTP) for data
queries over the web (the semantics of the protocol in-
volve the rules for querying files based on their metadata
descriptors).

To summarize, DataSpace inherently supports dis-
tributed data mining in the following ways:®

e DataSpaces supports distributed data by supplying
a metadata standard, a federation mechanism, and
easy to setup server code (Java, C++) that can
be deployed near the data. A client can readily
retrieve a table view that consists of columns joined
from multiple DataSpace servers.

e DataSpace servers can interface with flat files,
databases, and other formats. This ability to serve
binary/text data reduces the large overhead of a
uniform database record format. Server code is also
extensible to new data format handlers.

e DataSpaces supports specialized socket layers (par-
allel sockets, etc.) to facilitate high throughput
data transfers.

YDataSpace — A Web for Data http://www.dataspaceweb.net/

e DataSpace also supports publishing logs from a
large number of sources with desired data privacy
preserved with access control lists.

4.3 Distributed Data/Distributed Processing
Given the amount of data that can be generated by
processes such as network packet traces, attempting
to manage data using a centralized approach may be
computationally infeasible.Even for a small organiza-
tion, the size of audit logs can become quite large. For
large ISPs, where data collected can be hundreds of gi-
gabytes a day, moving source data becomes infeasible.
The major issue with centralized data collection is that
as data is being collected, the collection point can easily
become overwhelmed with respect to the required net-
work bandwidth needed to move the data, as well as
processor cycles, and I/O requirements of the host to
move the data through the TCP/IP stack and onto the
storage device. With enough data sources, it is unlikely
that a single host will be able to keep up. Centralized
processing may work if the node acting as the sole pro-
cessing point acts upon aggregated or generalized data
of reduced size.

With the distributed data paradigm, keeping data
at the collection points requires no additional resources
other than those already in place to collect the data.
Distributed processing also enables real-time analysis at
the lowest level closest to the source that would not be
possible if data is moved away from its site of origination
or centralized processing of logs.

Distributed processing of data at collection points
is another logical choice. A variation of distributed
processing is aggregating data and then moving a data
summary to another node responsible for answering
data queries. The primary disadvantage of a distributed
approach is the administrative overhead necessary to
coordinate tasks on various hosts.

For a distributed processing model, a framework is
needed where one can specify how and when data is
to be processed providing a base set of features that
all logging processes require. It also allows both ad-
hoc and canned/general processing on data as it ar-
rives. The actual processing of data can be defined stati-
cally or dynamically — processing depends on predefined
paths/actions and also on the contents of the data pack-
ets. For example, if a certain signature is matched, the
data flow path can be switched and other processing
agents can be alerted as well. In this manner, indepen-
dent agents that manage a particular data source can
work together to accomplish overall goals.

At NCSA as we collect NetFlow records we store
the data locally in audit logs for forensic purposes and
also process each flow record as it arrives and either

send it to another location for further processing or
generate an Email or web page based on profiles or
signature matches. Using the same framework at all
data collection and processing points helps to mitigate
software maintenance problems.

Used in conjunction with the distributed collection
paradigm, data is kept where it was generated (e.g.
host-based logs) or first collected (e.g. syslogs). Data
can then be processed in real-time at these points and
meta events can either be sent to some centralized
location that is collecting events from various data
generators or it can be sent to another collector to affect
how it will process subsequent incoming data.

5 Conclusions

In this paper we outline different data management
approaches for data mining audit logs. The core
problem is scalability since individual logs, and thus also
the union of multiple logs, can be huge in size depending
on the scope of a particular network.

Different organizations approach this same data
management problem by leveraging the unique re-
sources available to them such as mass storage, process-
ing power, software developers, network bandwidth, and
database capacity. Specifically in this paper we present
the multiple approaches NCSA is currently developing
for data management of its heterogeneous network logs
for data mining. As exemplified in our use of multiple
approaches, at this time there is no clear consensus on
the best approach for large networks. However, future
plans include quantitative measurements for the differ-
ent data management approaches we are implementing.

6 Acknowledgments

The following members of the NCSA SIFT team made
significant indirect contributions to this paper (alpha-
betically): Loretta Auvil, Ratna Bearavolu, Randy But-
ler, Ruth Aydt, David Clutter, Kiran Lakkaraju, Doru
Marcusiu, Bobby Rariden, David Tcheng, and Michael
Welge.

References

[1] M. Almgren and U. Lindqvist, Application-Integrated
Data Collection for Security Monitoring , Recent Ad-
vances in Intrusion Detection (RAID), (2001).

[2] T. Bass, The Federation of Critical Infrastructure In-
formation via Publish and Subscribe Enabled Multisen-
sor Data Fusion , 5*" Itnl. Conference on Information
Fusion, (July 2002), pp. 1076-1083.

[3] T. Bass, Multisensor Data Fusion for Next Generation
Distributed Intrusion Detection Systems , IRIS Nat.
Symp. on Sensor & Data Fusion, Johns Hopkins Uni-
versity/Applied Physics Lab., (May 1999).

[4]

[5]

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

(22]

J. Balasubramaniyan et al., An Architecture for In-
trusion Detection using Autonomous Agents, Annual
Computer Security Applications Conf., (1998).

P. Bernstein, Middleware: A Model for Distributed
Services , Comm. of the ACM 39, 2(February 1996),
pp- 86-97.

E. Bloedorn, et al., Data Mining for Network Intrusion
Detection: How to Get Started , AFCEA Fed. Database
Colloqg. and Exposition, (2001).

J. Brown, A. McGregor, and H-W. Braun, Network
Performance Visualization: Insight Through Anima-
tion, Passive/Active Measurement Wksp., (2000).

V. Corey, et al., Network Forensics Analysis , IEEE
Internet Computing, (Nov/Dec 2002), pp. 60-66.

F. Cuppens and A. Miege, Alert Correlation in a
Cooperative Intrusion Detection Framework , IEEE
Symp. on Security & Privacy, (2002).

O. Dain, and R. Cunningham, Fusing a Heterogeneous
Alert Stream into Scenarios, within Appl. of Data
Mining in Comp. Sec. Kluwer, (2002), pp. 103-122.

H. Debar and A. Wespi, Aggregation and Correlation
of Intrusion-Detection Alerts , Recent Advances in
Intrusion Detection (RAID), (2001).

D. Ganeson, D. Estrin, and J. Heidemann, DIMEN-
SIONS: Why Do We Need a New Data Handling Ar-
chitecture for Sensor Networks? HotNets-I, Princeton
University, (2002).

R. Gopalakrishna and E. Spafford, Framework for Dis-
tributed Intrusion Detection using Interest Driven Co-
operating Agents, Recent Advances in Intrusion Detec-
tion (RAID), 2001.

A. Joch. Cracking the Code of Life , Oracle Magazine,
(Jan/Feb 2003), pp. 36-42.

C. Kruegel, T. Toth, and C. Kerer, Decentralized Event
Correlation for Intrusion Detection , Intl. Conf. on
Info. Security and Cryptology, (2001).

C. Kruegel and T. Toth, Applying Mobile Agent Tech-
nology to Intrusion Detection , ICSE Workshop on
Software Engineering & Mobility, (2001).

Z. Li, et al., The Case of Centralized Logging Database
for Intrusion Detection , submitted to Hot Topics in
Operating Systems (HOTOS), (2003).

W. Lee et al., A Data Mining and CIDF Based Ap-
proach for Detecting Novel and Distributed Intrusions
, RAID, (2000).

P. Ning, Y. Cui, An Intrusion Alert Correlator Based
on Prerequisites of Intrusions , Technical Report, TR-
2002-01, North Carolina State University, Department
of Computer Science, (Jan. 2002).

P. Petrov, et al., A Hierarchical Collective Agents
Network for Real-Time Sensor Fusion and Decision
Support , AAI/KDD/UAI Joint Wksp. on Real-Time
Decision Support & Diagnosis Systems, (2002).

P. Porras, M Fong, and A. Valdes, A Mission-Impact-
Based Approach to INFOSEC Alarm Correlation
Recent Adv. in Intrusion Detection, (2002).

C. Silvestro, Intrusion Detection Systems and Log
Correlation. Masters Thesis, Politecnico di Milano,

23]

[24]

25]

[26]

(2002).

E. Spafford, D. Zamboni, Data Collection Mechanisms
for Intrusion Detection Systems , Purdue University,
CERIAS Tech. Report 2000-8, (2000).

J. Undercoffer, F. Perich, and C. Nicholas, SHOMAR:
An Open Architecture for Distributed Intrusion Detec-
tion Services , Tech. Report, University of Maryland
Baltimore County, (Sept. 2002).

A. Valdes, K. Skinner, An Approach to Sensor Corre-
lation , RAID, (2001).

G. Vigna, B. Cassell, and D. Fayram, An Intrusion
Detection System for Aglets , International Conference
on Mobile Agents (MA), (2002).

Data Mining Application

middleware

Central
Database
+—>

Figure 5: SIFT Middleware Architectures

Centrdl DataSpace
Datbase Server

W

w2) g ¢ o b

Strsaming Data

b

Log File Format ‘

3
Figure 3: Parallel NCSA SIFT Data Management Data o Data

Space Mining

Server Ty 3
Efforts. roquested daf Application

1T

Atimty Database

3 -

Rales for
Each New
File

Model
Warchouse
‘ I
|
Mode!
Generator

Figure 6: SIFT DataSpace Server Architecture

Figure 4: SIFT Central Database Architecture

APPROACHES processing power | network bandwith | mass storage
Centralized high high high
Centralized - Aggregation medium medium medium
Distributed low/machine high low
Hierarchical medium low medium

Table 1: Primary Comparison Criteria

APPROACHES

fault tolerance

data format

query flexibility

privacy:
target/
scope

Centralized

low

complex

high

concentrated
/global

Centralized - Aggregation

low-medium

medium-complex

medium

multiple-
concentrated
/limited-
global

Distributed

medium-high

simple

low

multiple
/limited

Hierarchical

low-medium

simple

low

multiple
/global

Table 2: Secondary Comparison Criteria

Clusters Within Clusters: SVD and Counterterrorism

D.B. Skillicorn
School of Computing, Queen’s University
Kingston Canada
skill@cs.queensu.ca

Abstract

We argue that one important aspect of terrorism de-
tection is the ability to detect small-scale, local corre-
lations against a background of large-scale, diffuse cor-
relations. Singular value decomposition (SVD) maps
variation, and hence correlation, into proximity in low-
dimensional spaces. We show, using artificial datasets
whose plausibility we argue for, that SVD is effective at
detecting local correlation in this setting.

Keywords: singular value decomposition, attribute
selection, correlation.

1 Introduction

Detecting terrorism can be posed as an unsupervised
data mining problem in which the goal is to separate
individuals into two classes, threats and non-threats.
However, it is unusual because the members of one
class (the threats) are actively trying to look as similar
to members of the other class as possible. Without
information about the particular data mining algorithm
in use, the best strategy for doing this is to arrange for
their attribute values to be modal.

This has two implications for data mining in terror-
ism detection: attributes should be such that it is hard
to manipulate their values; and the data mining algo-
rithms used should rely on the relationships between at-
tributes, rather than simply their values. If attributes
are chosen appropriately, then the activities of terrorists
and terrorist groups may be visible as unexpected cor-
relation, both among themselves and between the ter-
rorists and their target. However, this correlation must
be detected against a background of widespread diffuse
correlation in the population at large.

Singular value decomposition is a useful tool for de-
tecting unusual correlation because it transforms varia-
tion into proximity. Both distance measures and visual
inspection can detect proximity far more easily than
they can detect correlation directly.

We present preliminary results using artificial
datasets. There is little experience to guide the form
of such datasets, but we argue that the ones we use are

at least plausible.

Results are encouraging, in the sense that SVD
has high detection accuracy with reasonably low false
positive rates. We are unable, so far, to specify an ideal
algorithm schema for applying SVD, but we show that
several strategies are effective.

2 Goals and assumptions

It seems implausible, given our present data mining
technologies and understanding of the problems of coun-
terterrorism, that data mining will be able to be de-
ployed as a frontline tool against terrorism (at least
in the immediate future). However, a useful role for
data mining is as a filter, making it economic to select
a manageable subset of individuals for further scrutiny
using traditional intelligence techniques. In this view,
the benefit of data mining is primarily to improve the
effectiveness of other counterterrorism methodologies.
We assume, for the sake of concreteness, that we are
dealing with datasets whose rows describe individuals
and whose columns are attributes of those individuals.
For example, datasets might contain information about
which cities an individual has visited, or which flights
he has taken.
Goals.

The untargeted case. Given a dataset, find clusters
whose correlations are stronger than average, and select
its members. If a group of terrorists are detectable as
a cluster within the background of other clusters, then
their target may also be detectable as part of the same
cluster.
The targeted case. Given a dataset and a target,
find clusters around the target whose correlations are
stronger than expected. Any individual target might
be expected to be part of multiple clusters representing
his or her interests and collaborations. Hence, a cluster
around them is likely to include parts of other clusters
in which they are involved. This diffuse pattern should
show an unusual concentration if there is a tightly-knit
group that is focused on the target.

In the targeted case, the target is of the same kind

as the objects described by the rows of the dataset,
individuals in this case. In the untargeted case, other
kinds of targets are possible.

Assumptions. We wish to construct a detection
model that will select some of these individuals for
further scrutiny. We make the following assumptions:

e The potential consequences of failing to detect a
terrorist are so great that a fairly high level of false
positives is acceptable.

e Terrorists act in groups, so individual false neg-
atives are acceptable provided that at least one
member of a group is detected.

Attributes. The attributes in such datasets can
be usefully divided into two kinds:

e Incidental attributes that describe properties and
actions that are believed to be potentially corre-
lated to terrorism. These may be static, such as
country of citizenship, gender, income and so on;
or based on actions such as purchasing particular
kinds of plane tickets.

e Intrinsic attributes that describe properties and,
more commonly, actions that are necessary to carry
out a terrorist action, for example carrying out
surveillance on a target site.

Both kinds of attributes have values that are shared
by terrorists and the general population. The problem
with incidental attributes is that if terrorists can learn
the values of these attributes that trigger the detection
model (and they can), then they can arrange to appear
innocent. This leaves the detection model with a 100%
false positive rate, which is the worst possible outcome.

The mechanism by which terrorists can learn the
relationship of attributes to the detection model is by
probing, the so-called Carnival Booth algorithm [4].
Terrorists arrange to be considered by the detection
model while behaving innocently. Those who do not
trigger the model can be reasonably certain that they
will not trigger it again on subsequent, less innocent
occasions. The use of incidental attributes is a major
weakness of airline passenger profiling systems.

Models based on incidental attributes can be made
more robust by adding uncertainty into the selection
mechanism. This can be done by wrapping the detec-
tion model in a layer that obscures its precise function-
ing, for example, by randomly selecting some individu-
als who do not trigger the detection model and treating
them as if they did. It can also be done by using fam-
ilies of detection models based on different thresholds
for individual attributes (i.e. different discretizations
of continuous data) or on different sets of attributes.

These techniques all break the assumption that a per-
son who has not been selected by the detection model
on one occasion will not be selected on another occa-
sion. However, these techniques all add expense and
complexity; and using families of detection models risks
one model failing to detect a threat that another model
would have, which may be politically unacceptable if an
incident takes place.

Intrinsic attributes are inherently better because
terrorists are forced to have certain values for them. Of
course, some of the general public will also share these
values; but such attributes allow the set of individuals to
be separated into those who are not terrorists and those
who might be. As we have seen, incidental attributes do
not do this reliably. Moreover, the set of individuals who
can be eliminated will tend always to be much larger
than the set of possible threats who remain.

The use of intrinsic attributes forces terrorists to
come under scrutiny. Their only strategy then is to
conceal themselves among that part of the population
who share the same attribute values — but this becomes
harder and harder as the number of attributes increases.

The power of intrinsic attributes can be seen in the
aftermath of a terrorist action. Once such an action
has taken place, the set of relevant attributes is clear
— to plant a bomb in a certain place requires being in
that place, for example. And once the correct set of
attributes is known, terrorists are often detected very
quickly. (This is also the basis of much police work —
an alibi is a value for a very specific attribute which
eliminates many possible perpetrators.)

Terrorists can only try to conceal their forced
actions among those of many others. This is difficult
for two reasons: (a) A terrorist group is forced to make
coordinated actions, and such actions are potentially
visible as correlations in the data. For example, if they
meet to plan, then they are located at the same place at
the same time. (b) A terrorist group is forced to carry
out actions that are correlated with their target, and
these actions are also potentially visible in the data. For
example, they may travel the same route as the target
but earlier in time.

These properties of datasets available for countert-
errorism suggest that the problem is not closely related
to outlier detection because terrorists try, as far as pos-
sible, to take on modal values for attributes. How-
ever, if intrinsic attributes are used, terrorist groups
cannot avoid correlations both among themselves and
with their targets. It is these correlations, which reveal
themselves as locally dense regions within appropriate
representations of the dataset, that data mining must
search for — and which suggest the title of this paper.
Some evidence for this is provided by Krebs [12], who

analyzed the connections among the group involved in
the destruction of the World Trade Center. He showed
that the members of the group were indeed tightly corre-
lated. Of particular note is that a single meeting among
a subset of them reduced the mean distance between
members by 40% from its value given their relationships
alone. Such is the power of intrinsic action attributes.

An immediate concern is that datasets describing
any human population will be full of correlated subsets,
and it might prove impossible to detect the correlations
due to terrorism against such a noisy background.
Consider the dentists of Pittsburgh!. We might expect
that they would appear as a correlated group — they
come from similar (educated) socioeconomic groups,
they live in similar settings, and they travel to similar
conferences and conventions. However, as we consider
more aspects of their lives, these correlations begin to
be diluted by others: they travel to differing parts of
the country for family occasions, their children insist
on holidays in different places, and they have different
hobbies. The terrorists of Pittsburgh (should there be
any) might also appear strongly correlated by a few
attributes, but this correlation is much less likely to
dilute as further attributes are considered.

More formally, the reasons why correlation in ter-
rorist groups might be visible against a background of
widespread correlation are these:

1. Most individuals are part of a fairly large number of
subgroups with whom they are correlated — enough
that the strength of membership in each one is quite
small.

Consider the folk theorem about six degrees of sep-
aration, the contention that a chain of acquain-
tances of length less than or equal to six can be
built between any two people in some large pop-
ulation (originally the population of the U.S. in
Milgram’s original work, now often claimed for the
total world population). If a given individual is
acquainted with (say) @ individuals, then each of
these a individuals must be acquainted with a fairly
large number of others outside the original set of a
or else the powers do not increase quickly enough
(since a® ~ the large population).

This result contradicts our intuition that an indi-
vidual’s social circle tends to be small. The res-
olution (see, for example, [14]) is that such small
social circles are bridged by rare, but not too rare,
‘long-distance’ connections.

Acquaintanceship is a reasonable, although not
perfect, surrogate for correlation in the kind of

TApologies to both dentists and Pittsburgh for this example.

datasets we are interested in — we would not be
surprised that acquaintances would turn out to be
fairly well correlated in large datasets — they live in
similar places and have similar lifestyles, including
travel arrangements. What is less obvious is that
the ‘long distance’ connections in acquaintanceship
are likely to produce strong correlations as well —
for an acquaintanceship survives only if its mem-
bers have ‘something in common’. Hence the im-
plication of six degrees of separation (and the ex-
istence of short paths in acquaintanceship graphs)
is that correlation smears rapidly across subgroups
because of the richness of cross-connections of com-
mon interests and behavior.

2. We might expect terrorists to be substantially less
connected by correlation than most people because
they have a much narrower focus. Informally,
we might suspect that terrorists don’t buy life
insurance, don’t take holidays, don’t buy lottery
tickets, and don’t have children in Little League.
We quote from Krebs [12, p49], relying on previous
work on the social network structures of criminals:
“Conspirators don’t form many new ties outside of
the network and often minimize the activation of
existing ties inside the network”.

These properties provide some assurance that a signa-
ture for terrorist actions exists in datasets that are suf-
ficiently large and diverse. Note that, in this context,
high dimensionality is a benefit because it acts to smear
the background correlation in the population at large.

3 Data Generation Models

Since, for obvious reasons, real datasets containing ter-
rorist actions are not available, the quality of detec-
tion models will have to be evaluated using artificial
datasets. This immediately raises the question of what
kinds of datasets are plausible.

Intrinsic attributes can be divided into those related
to actions and those related to state. We now consider
the properties of each.

For action attributes, an immediate issue is how
to handle their temporal nature. They could be coded
with time signatures attached and temporal data min-
ing techniques used — but I am not aware of any present
data mining technology powerful enough to detect tem-
poral subsequences when different parts of them are car-
ried out by different individuals (this is an interesting
problem, though). It seems simpler, and perhaps more
robust, to handle temporal properties by creating at-
tributes for actions covering a period of time. For ex-
ample, if visits to New York are an action of interest,
then these can be converted into attributes as visits per

month: January visits, February visits, and so on. It
is also sensible to use overlapping time periods (creat-
ing partly correlated attributes) to avoid sensitivity to
boundary choices.

Attributes representing actions will also be: (a)
Sparse, because only a small fraction of the total
population of individuals will carry out any given task
(e.g. only a small fraction of the U.S. travelling public
visit San Francisco in a given month). (b) Have a
frequency distribution whose mode is close to 1 and
which decreases quickly (e.g. those people who visit
San Francisco in a given month mostly visit only once).

Such attributes can plausibly be generated by first
introducing a high level of sparseness and then generat-
ing the nonzero values using a Poisson distribution with
mean close to 1.

State attributes will have much flatter distributions.
For example, the locations of residences of members of
a terrorist group around a target might be expected
to conform to a normal distribution because of the
pressures for closeness to the target, counterbalanced
by the pressure to remain far from each other. State
attributes will also tend to be dense (everyone has to
live somewhere).

4 Singular Value Decomposition

Singular Value Decomposition (SVD) [7] is a well-known
technique for reducing the dimensionality of data.

Suppose that a dataset is represented as a matrix
A with n rows (corresponding to individuals) and m
columns (corresponding to their attributes). Then the
matrix A can be expressed as

A =USV'

where U is an n x m orthogonal matrix, S is an
m x m diagonal matrix whose r non-negative entries
(where A has rank r) are in decreasing order, and V
is an m x m orthogonal matrix. The superscript dash
indicates matrix transpose. The diagonal entries of S
are called the singular values of the matrix A.

One way to understand SVD is as an axis transfor-
mation to new orthogonal axes (represented by V'), with
stretching in each dimension specified by the values on
the diagonal of S. The rows of U give the coordinates
of each original row in the coordinate system of the new
axes.

The useful property of SVD is that this transforma-
tion is such that the maximal variation among objects
is captured in the first dimension, as much of the re-
maining variation as possible in the second dimension,
and so on. Hence, truncating the matrices so that Uy, is
nxk, Sk is kx k and Vi, is m X k gives a representation
for the dataset in a lower-dimensional space. Moreover,

such a representation is the best possible with respect
to both the Frobenius and Ls norms.

SVD has often been used for dimensionality re-
duction in data mining. When m is large, Euclidean
distance between objects, represented as points in m-
dimensional space is badly behaved. Choosing some
smaller value for k allows a faithful representation in
which Euclidean distance is practical as a similarity
metric. When k£ = 2 or 3, visualization is also possi-
ble.

Another way to understand SVD is the follow-
ing: suppose that points corresponding to both rows
and columns are plotted in the same k-dimensional
space. Then each point corresponding to a row is at
the weighted median of the positions of the points cor-
responding to the columns and, simultaneously, each
point corresponding to a column is at the weighted me-
dian of the positions of the points corresponding to the
rows. Hence SVD can be viewed as translating corre-
lation or similarity into proximity. Unfortunately, only
positive correlation is taken into account by SVD, so
that rows that are strongly negatively correlated will
not be placed close together in space.

SVD measures variation with respect to the origin,
so it is usual to transform the matrix A so that the
attributes have zero mean. If this is not done, the first
singular vector represents the vector from the origin
to the center of the data, and this information is not
usually particularly useful. For example, when A is the
adjacency matrix of a graph, it is the second singular
vector which describes the partitioned structure (if any)
of the graph.

While SVD is a workhorse of data manipulation, it
has number of subtle properties that are not well-known.
We will use four of them.

Fact 1: The singular value decomposition of a ma-
trix is insensitive to the addition (or subtraction) of in-
dependent zero-mean random variables with bounded
variance [1]. This property has been used to speed up
the computation of SVD by sampling or by quantizing
the values of the matrix. In counterterrorism, the effect
we are looking for is so small and the results so impor-
tant that neither of these is attractive. However, the
fact does explain why SVD is good at detecting clusters
within clusters — the outer cluster representing the ma-
jority of the data has zero mean (by normalization) and
so, by the fuzzy central limit theorem, increasingly re-
sembles a normal distribution as the number of ordinary
individuals (and the number of attributes) increases.

Fact 2: SVD is a numerical technique, and so the
magnitudes of the attribute values matter. However,
multiplying the attribute values of a row of A by a scalar
larger than 1 has the effect of moving the correspond-

ing point further from the origin. Because the positions
of all of the other points depend, indirectly, on their
correlations with the scaled point, via their mutual in-
teractions with the attributes, points that are correlated
with the scaled point are pulled towards it. When there
is little structure in the low-dimensional representation
of a dataset, this scaling technique can be used to find
the individuals who are (positively) correlated with a
given individual. In practice, this often makes it easier
to see a cluster that would otherwise be hidden inside
another in a visualization.

Fact 3: Although SVD translates only positive cor-
relation to proximity, negative correlation information
can be extracted from the SVD indirectly. Let Ay be
the product

Ar = UpSpVy

The matrix C' = A A}, can be understood as a kind of
correlation matrix in which some kinds of correlation
have been discarded (those arising from dimensions
k 4+ 1 and higher) while some higher-order correlation
information has been included [10,11]. In other words,
entries in C' are non-zero even when the corresponding
entry of AA" was zero (that is, even when there is no
direct correlation between a pair of individuals).

The connection between the sign of entries in this
matrix and correlation was noticed empirically by Kon-
stotathis and Pottenger [11]. It is also related to a well-
known technique for partitioning graphs using spectral
methods [2,9]. The following explanation shows why
the magnitude of the entries of C' can be regarded as
correlations (both positive and negative) between indi-
viduals. Consider the ijth entry of C'. This entry arises
as a sum of values, each of which is the product of a
column of U, an entry of S, and a row of V. Such an
entry is negative when individuals ¢ and j are on oppo-
site sides of the origin in one of the dimensions. A sum
of such values represents an average ‘reflection’ in the
origin in all £ dimensions.

When the ijth entry of C is negative, we can con-
clude that individuals ¢ and j are negatively correlated.
In fact, we can go further — when entry C;; is smaller
than Cj; we can conclude that the correlation between
individuals ¢ and j is weak.

Fact 4: The decomposition depends on all the data
used, both normal and anomalous. The precise geome-
try of the detection boundary of SVD is hard to predict
without performing the decomposition, and impossible
without knowledge of the dataset. Hence, a terrorist
group cannot reverse engineer the transformation to de-
termine how they will appear, even knowing that SVD
is being used. In particular, SVD is resistant to probing
attacks since any attempt to probe cannot control for
the innocent individuals considered at the same time.

5 Algorithms

There are a number of algorithmic tools based on SVD
that can be combined in various ways. Our results do
not indicate a clear optimal strategy for using SVD, but
they do reveal several effective tactics.

If we start with a high-dimensional dataset (e.g. m
= 30), then we can apply SVD, truncate U to two or
three columns and plot the corresponding rows. Their
positions are the best low-dimensional representation of
the original data.

Zero-mean normally-distributed data appears as a
spherical cluster centered on the origin even in low
dimension. Any correlated set of individuals tends to
appear as a cluster further from the origin along the first
singular vector (and sometimes the second). Hence, a
frequency plot of the first column of U may sometimes
reveal a possible target and associated terrorists. Visual
inspection of the plot can also be revealing.

When a target is known, there are several further
options for selecting individuals as potential threats:

e Project points onto the vector from the origin
to the target point in the transformed two- or
three-dimensional space, and classify either the
individuals whose points are further from the origin
than the target, or are close to the target as threats.

o Classify the t closest neighbors of the target in two-
or three- dimensional space as threats.

e (lassify the individuals whose points fall in a cone
from the origin centered at the target as threats
(i.e. the cosine similarity used in latent semantic
indexing [5]).

In all of these techniques, the target can be selected after
the SVD has been computed — hence only one SVD is
required.

Correlation information can be used in three ways:

e The selection mechanisms described above can be
used in the plots based only on the points correlated
with a particular target. This requires only replot-
ting and not recomputation of the SVD. However,
as we will see, there is little to be gained from this.

e Individuals who are not correlated with the target
can be successively removed, and the SVD repeated
on the resulting smaller dataset. This typically
reduces the dataset size by 75% or more, but
the contraction at each repetition becomes smaller
because the remaining individuals all have fairly
strong correlation with the target. All SVDs
after the first have to be recomputed for each
target because the winnowed datasets are target
dependent.

e The sizes of the datasets remaining after each
round themselves provide information. If the target
does not have an unusual correlation with other
individuals then the contracted datasets shrink
in size quite slowly. When there is an unusual
correlation of other individuals with the target, the
contracted datasets tend to become smaller quite
rapidly.

6 Experiments

In the experiments that follow, the part of the matrix
A representing normal individuals will consist of 1000
rows and 30 columns. The 30 columns represent a
set of attributes about each individual — we assume
that these are intrinsic attributes and that a threat
is forced to correlate with a target in the values of at
least some of these attributes. Each dataset has a small
number of additional rows added to represent a terrorist
group. The results presented are qualitative, partly
because there are too many free parameters to make an
exhaustive analysis straightforward, and partly because
there is not yet agreement about what structures in
datasets are plausible. However, the results are for
the first random dataset of each kind generated — no
selection of datasets to provide better than average
results was made.

In plots of two- or three-dimensional space, points
corresponding to normal individuals are shown as (blue)
dots, the target is shown as a (red) star, and the points
corresponding to terrorist as (blue) squares.

Experiment 1. We begin with a dataset in which
the points corresponding to ordinary individuals are
generated distributed normally around the origin with
variance 1. A terrorist group of size 10 is generated
distributed normally with variance 1 around one of the
normal individuals. Figure 1 shows how SVD can detect
a small cluster against a background cluster. Here we
assume that no target is specified beforehand — the
labelling confirms the fairly clear presence of a small
cluster to the left of the main cluster.

Figure 2 plots only those points that are correlated
with the target. This is, of course, artificial since we
are assuming that we do not know the target. However,
it illustrates what selection for correlation is doing —
it removes many points but does not help much with
identifying the terrorist cluster because the points that
are removed are far from the target in the transformed
space.

Experiment 2. In the previous experiment, the
terrorist cluster had the same variance as the base
cluster. Hence, it is likely that points from the terrorist
cluster will be overrepresented among points far from
the origin. We now show that this is not the reason for

uz2
*

-0.05 E

-0.15 ‘ ‘ ‘
-0.2 -0.15 -01 -0.05

ol

0.05 0.1 0.15
U1l

Figure 1: Plot of first two dimensions of the transformed
space. Individuals normally distributed with mean 0 and
variance 1, one individual randomly chosen as target,
terrorists normally distributed around that individual in 30
dimensions with variance 1.

01

0.05

u2
*

-0.05 Cl

-0.15 L
-0.2 -0.15 -0.1

I)
-0.05 0 0.05
U1

Figure 2: Same plot as in Figure 1 showing only individuals
correlated with the target. Note the change of scale on the
axes.

the quality of the SVD plot by repeating the experiment
with the variance of the terrorist cluster at 0.5. We now
expect points from the terrorist cluster to remain inside
the background cluster on average.

Figure 3 shows that the presence of an outlier
cluster in the transformed space is as clear as it was
before. Figure 4 plots only those points correlated with
the target and, as before, the separation of the target
cluster is a little clearer.

In these datasets, SVD discovers the terrorist clus-

01

0.05

u2

-0.05

-0.05 0 0.05 0.1
U1l

Figure 3: Individuals normally distributed with mean 0
and variance 1, one individual randomly chosen as target,
terrorists normally distributed around it with variance 0.5.

0.06
0.04
0.02f
(o} =
ol
*EI
(o}
= o} T
S -0.02+ & @
-0.04
(o}
-0.06
-0.08
-0.1f
~0.12 | | | | | . .)
~0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02

U1

Figure 4: Same plot showing only individuals correlated
with the target.

ter without knowing the target because, by Fact 1, the
base cluster has little linear structure. The first singular
value is overwhelmingly likely to point towards the me-
dian of the smaller embedded cluster around the target
even if its points are entirely inside the larger cluster.

This is arguably an easy dataset, but not entirely
trivial because the fuzzy central limit theorem suggests
that, given enough data, and given that normalization
takes place after the data is collected, we can expect
that many parts of a dataset should look as if they were
generated by a normal distribution.

Experiment 3. We now consider a dataset with
following structure: 100 points are generated, normally
distributed around 0 with variance 1. 100 clusters of 10
points are generated, normally distributed with variance
1 with centers at each of the original points. A terrorist
cluster of size 10, normally distributed with variance 1
is generated around a random one of the second level
points. So rather than a single background cluster
around zero, we have a large set of background clusters
with many different centers.

Figure 5 shows the resulting plot. It is clear that the
terrorist cluster cannot be distinguished from the back-
ground without prior knowledge of the target, and only
imperfectly then. Even when the uncorrelated points
are removed from the plot (Figure 6), the terrorist clus-
ter is not cleanly separated either by projection along a
line to the target or by proximity to the target. How-
ever, the target cluster is fairly well identified using
cosine similarity to the target (we have shown a clus-
ter that would include the entire terrorist group, but
many cones with smaller angles would also detect sev-
eral members of the group).

01p
008
006) - 3
0.04f -
002}

S o
002

-0.04 -

-0.06 -

-0.08-

I I I I I I]
-0.02 0 0.02 0.04 0.06 0.08 0.1

I
-0.04

I
-0.06

-0.1 I
-0.1 -0.08

Figure 5: 10 normal clusters with variance 1 with centers
drawn from a normal distribution with mean 0 and variance
1; terrorist cluster normally distributed around a randomly
chosen individual with variance 1.

Experiment 4. Figure 7 shows the plot for the
dataset of Experiment 3 when the row corresponding to
the target is scaled by a factor of 1.2. There is very
little difference between this plot and those where the
target row is unweighted.

However, we now repeat the SVD using only those
422 rows of the original matrix that are correlated
with the target. The results are shown in Figure 8.
Both projection onto a vector from the origin to the

01

0.08 -

0.041 -

0.02

u2
o

-0.02

-0.04

-0.06 -

-0.08

-0.1 L L L L L L I Il
-0.1 -0.08 -0.06 —-0.04 -0.02 0 0.02 0.04 0.06

U1l

Figure 6: Same plot showing low false positive rate using
a cone aimed at the target as a selector.

01

0.08

0.02

u2
o
T

-0.02-

-0.04

-0.06 -

-0.08 -

0.15

0.1

0.05[-

U1l

-0.05-

-0.15

2
0.15 0.1 0.05 0 -0.05 -0.1

u2

-0.15 -0.2

Figure 8: Repeated SVD using only the 422 individuals
correlated with the target in the first round.

-0.05

U1

-0.15

0.1 L L L L L I I I
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

Figure 7: Same dataset as for Experiment 3, with the
target row scaled by 1.2

target, and proximity now begin to discover the terrorist
cluster.

Figure 9 shows what happens after a third round of
SVD on the 362 points correlated with the target on the
previous round. Both projection onto a vector and prox-
imity continue to improve their predictive performance,
and now clearly identify the terrorist group. Notice the
flattening of the number of uncorrelated points being
removed at each stage.

Experiment 5. Using the dataset of Experiment
3, we now multiply the row corresponding to the target
by 4. Figure 10 shows what happens — the target point
moves far from the origin, but it also tends to pull the

2 I I I)
0.25 0.2 0.15 0.1 0.05 0 -0.05 -0.1 -0.15

u2

Figure 9: Repeated SVD using only the 362 individuals
correlated with the target.

correlated points towards it, and so away from the main
cluster. Both proximity and proximity on the projection
onto the vector from origin to target are effective at
finding the terrorist cluster.

Experiment 6. In the previous experiments (Ex-
periments 3-5), the terrorist cluster was still distin-
guished because it was the only cluster at the ‘third’
level. We now generate a dataset with 100 points, nor-
mally distributed around 0 with variance 1. 100 clusters
of 10 points are generated, normally distributed with
variance 1 around each of the original points, and 20
clusters of size 10 normally distributed with variance
1 are generated around randomly chosen points in the

0.1

0.05

u3

-0.05

-0.1

Figure 10: 10 normal clusters with variance 1 with centers
drawn from a normal distribution with mean 0 and variance
1; terrorist cluster normally distributed around a randomly
chosen individual with variance 1; weight of 4 on the target.

Figure 11: Same plot showing only the individuals corre-
lated with the target.

second level. Omne of these ‘third’ level clusters is chosen
as the terrorist cluster and its center as the target.

Figure 12 shows that both projection and proximity
find the terrorist cluster with reasonable accuracy.

Experiment 7. In the dataset, the local environ-
ment of each of the second level cluster centers is the
same and we can choose any of them as possible terror-
ist clusters. On the other hand, the local environment
of all of the other points is quite different. Figure 13
shows the sizes of the sets of points correlated with a
particular point, when that point is a second-level clus-
ter center (a possible target) and when it is one of the
other points.

0.05,

-0.2 -0.15 -0.1 -0.05 0 0.05

U1

Figure 12: Three levels of clusters: first level of 100
cluster centers normally distributed around 0 with variance
1; second level of 10 cluster centers normally distributed
with variance 1 around these; then 20 clusters of size 10
distributed around these. One second-level cluster center
designated as the target.

Those points that are potential targets have neigh-
borhoods that start out smaller and shrink more rapidly
than the neighborhoods of points that are not tar-
gets. The difference between the two types of points
is marked, even by the third round.

After Size of sets correlated with a point
rnd that is a target that is not a target
1 145 | 419 | 199 | 831 | 370 | 586 | 416
2 20 | 27| 47513 | 90 | 194 | 150
3 20 | 461 | 48 | 86| 78
4 400 | 42| 56| 65

Figure 13: Sizes of correlated sets after elimination of
uncorrelated individuals. Initial size of all sets is 1200.

Experiment 8. In our experiments so far, the
number of terrorists has been about 1% of the total
number of individuals. This fraction is too large to be
realistic, even if a substantial prescreening process is
applied before this kind of data mining is used.

Figure 14 shows the three-dimensional plot of a
dataset with 10000 rows, normally distributed around
the origin with variance 1, with a 10-terrorist cluster
normally distributed with variance 1 generated around
one of the ordinary individuals. The terrorist cluster
is now much more diffuse. However, note that the
extremal point along the projection on the vector from
the origin to the target is a terrorist, and several others
project on this vector further from the origin than the
target.

0.04 -

0.03

0.011

-0.01f

-0.02

-0.03|

-0.04 L L L L l I I)
0.04 0.03 0.02 0.01 0 -0.01 -0.02 -0.03 -0.04

Figure 14: Plot of a 10-terrorist group and a dataset of
10000 ordinary individuals.

As Figure 15 shows, adding a weight of 4 to the
target clearly selects the majority of the terrorist group,
so even in large datasets SVD is effective.

0.06 —

0.04 —

0.06
0.02 —

0.04

u3

004 002 o

-0.02 U1l

004 006 _gog “o1 -0.04

-012 014

u2

Figure 15: Same dataset with the target weight scaled by
4.

Experiment 9. Fact 1 suggests that sparseness in
datasets will not cause difficulties for SVD. This illus-
trates one of the strong properties of SVD — it is capable
of detecting correlation even between individuals who
have no (non-zero values of) attributes in common, via
higher-order correlations.

Figure 16 shows a plot of a dataset similar to that
of Experiment 1, but with 80% of the values set to zero.
Although many of the terrorist cluster are not close to
the target, several members still are. A dataset like this
represents a situation where underlying attributes exist
but are missing for some reason.

021

005 a

U1
*

-0.05

~0.15 I I I I I I)
0.2 0.15 0.1 0.05 0 -0.05 -0.1 -0.15

u2

Figure 16: A sparse dataset generated by setting 80% of
the values in a dense dataset from Experiment 1 to zero.

Another kind of sparse dataset is one in which there
are no meaningful values for the zero entries. Figure 17
shows the plot of such a dataset. Here all 1010 rows are
generated using a normal distribution with mean zero
and variance 1, and a random row among the first 1000
is selected as the target. The rows of the terrorist cluster
are then correlated with the target in the following way:
if a target attribute has a non-zero value then, with
70% probability, the terrorist row is changed to a value
drawn from a normal distribution whose mean is the
value of the target attribute and whose variance is 1;
otherwise the value is left unchanged. The correlation
of the terrorist cluster with the target is plainly visible.

-0.21

-0.15F

-0.05-

u2
o]

01r

0.15 I I I I I I)
0.15 0.1 0.05 0

Figure 17: A sparse dataset generated directly.

Experiment 10. We now show that similar effects
hold for distributions other than the normal distribu-
tion. The Poisson distribution with mean 1 generates
many values close to 1, with the frequency decreasing
rapidly with magnitude. We build a dataset of a 1000
rows from this distribution, subtracting A to make the
values approximately zero mean.

Figure 18 shows the results when the terrorist
cluster is generated using a normal distribution with
variance 1 around a randomly chosen row. Figure 19
shows the results when the terrorist cluster is also
generated by the same Poisson distribution around the
target (i.e the mean of the terrorist distribution is
roughly the target).

0.15

0.1

U1l

-0.05-

-0.15

Figure 18: Ordinary individuals generated from a Poisson
distribution, terrorist cluster normally distributed around a
randomly chosen target.

7 Related Work

Techniques used for detecting outlying objects or out-
lying processes, for example Independent Component
Analysis (ICA) [8], and 1-Class Classification [15,16]
seem less likely to provide good solutions for terrorism
detection, although they may be effective when the val-
ues are completely beyond the control of individuals.

Singular value decomposition has been known since
1873, and used extensively in computing since Golub
discovered an effective algorithm to compute it [7].
There is a vast literature on its use for dimensionality
reduction; and it has been used for information retrieval
where proximity (in the sense of cosine similarity) serves
as a proxy for correlation [3].

Social Network Analysis [6] study the interactions
between individuals and derives global properties from
the structure of the resulting graphs. There are two

0.15

0.1f *

0.05

U1l

-0.05-

u2

Figure 19: Ordinary individuals generated from a Poisson
distribution, terrorist cluster Poisson distributed around a
randomly chosen target.

serious drawbacks to the use of SNA techniques for
terrorism detection:

e Networks are built by adding pairwise links be-
tween two individuals, and this will not scale well
since the number of potential links is quadratic
in the number of individuals. In practice, SNA
seems to have been used when a particular indi-
vidual threat has been identified, as a tool to dis-
cover his or her collaborators. In other words, SNA
has a bootstrap problem (but may be useful once
the kind of prescreening we suggest here has been
applied).

e Links are made between individuals as the result
of some interaction between them, rather than
because of some correlation between them. In other
words, SNA may discover two collaborators who
meet at a target site, but will not discover them
simply because they both wisit the target site.

Link or traffic analysis has similar drawbacks: it
can be useful once at least one member of a terrorist
group has been identified; but it has the same limita-
tion of only detecting direct relationships between two
individuals, rather than their correlated actions. Traffic
analysis has been used to detect unusually strong pat-
terns of interaction, but only on the basis of a handful
of attributes.

The paper [13] describes experiments using Induc-
tive Logic Programming on relational datasets recording
nuclear smuggling and contract killing. This work could
presumably be generalized to counterterrorism.

8 Conclusion

We have shown that SVD is able to detect small corre-
lated clusters, representing terrorists, against a variety
of backgrounds representing degrees of innocent corre-
lation. Qualitatively, in every case there exists a mech-
anism that identifies at least one (usually more) of the
terrorist cluster based on proximity to the target, ei-
ther directly in a low-dimensional space or by projection
along a vector derived from the target. The number of
false positives induced by these procedures is not trivial,
but it is arguably reasonable. Our results do not sug-
gest an optimal strategy for applying SVD for terrorist
detection — rather they suggest a number of effective
techniques. More experience will be required to deter-
mine how best to combine these techniques.

Many questions remain: are the generated datasets
used for these experiments reasonable analogues of real-
world datasets, can the ad hoc detection procedures
used here be codified and automated, and does the per-
formance remain acceptable as datasets become larger,
perhaps much larger?

ACKNOWLEDGEMENT. This work was carried out
while the author was a guest of the Faculty of Informa-
tion Technology, University of Technology, Sydney.

References

[1] D. Achlioptas and F. McSherry. Fast computation
of low rank matrix approximations. In STOC: ACM
Symposium on Theory of Computing (STOC), 2001.

[2] Y. Azar, A. Fiat, A.R. Karlin, F. McSherry, and
J. Saia. Spectral analysis of data. In ACM Symposium
on Theory of Computing, pages 619-626, 2001.

[3] M.W. Berry, S.T. Dumais, and G.W. O’Brien. Us-
ing linear algebra for intelligent information retrieval.
SIAM Review, 37(4):573-595, 1995.

[4] S. Chakrabarti and A. Strauss. Carnival booth:
An algorithm for defeating the computer-assisted

passenger screening system. Course Paper,
MIT 6.806: Law and Ethics on the Electronic
Frontier, http://www.swiss.ai.mit.edu/6805/

student-papers/spring02-papers/caps.htm, 2002.

[6] Scott C. Deerwester, Susan T. Dumais, Thomas K.
Landauer, George W. Furnas, and Richard A. Harsh-

Indexing by latent semantic analysis. Jour-
nal of the American Society of Information Science,
41(6):391-407, 1990.

[6] L. Garton, C. Haythornthwaite, and B. Wellman.
Studying online social networks. Journal of Computer-
Mediated Communication, 3(1), 1997.

[7] G.H. Golub and C.F. van Loan. Matriz Computations.
Johns Hopkins University Press, 3rd edition, 1996.

[8] A. Hyvérinen and E. Oja. Independent component
analysis: Algorithms and applications. Neural Net-
works, 13(4-5):411-430, 2000.

man.

[9]

[14]

[15]

[16]

R. Kannan, S. Vempala, and A. Vetta. On clusterings:
Good, bad and spectral. In Proceedings of the /1st
Foundations of Computer Science (FOCS ’00), page
367, 2000.

A. Kontostathis and W.M. Pottenger. Detecting pat-
terns in the LSI term-term matrix. Technical Report
LU-CSE-02-010, Department of Computer Science and
Engineering, Lehigh University, 2002.

A. Kontostathis and W.M. Pottenger. Improving re-
trieval performance with positive and negative equiv-
alence classes of terms. Technical Report LU-CSE-02-
009, Department of Computer Science and Engineer-
ing, Lehigh University, 2002.

V.E. Krebs. Mapping networks of terrorist cells.
Connections, 24(3):43-52, 2002.

R.J. Mooney, P. Melville, L.R. Tang, J. Shavlik,
I de Castro Dutra, D. Page, and V.S. Costa. Rela-
tional data mining with Inductive Logic Programming
for link discovery. In Proceedings of the National Sci-
ence Foundation Workshop on Next Generation Data
Mining, November 2002.

M. Newman and D. Watts.
analysis of the small-world network model.
Letters A, 263:341-346, 1999.

B. Schélkopf, J.C. Platt, J. Shawe-Taylor, A.J. Smola,
and R.C. Williamson. Estimating the support of a
high-dimensional distribution. Technical Report MSR-
TR-99-87, Microsoft Research, 1999.
D.M.J. Tax. One Class Classification.
Technical University Delft, 2000.

Renormalization group
Physics

PhD thesis,

Homeland Defense, Privacy-Sensitive Data Mining, and Random Value
Distortion

Souptik Datta*

Abstract

Data mining is playing an increasingly important role
in sifting through large amount of data for homeland de-
fense applications. However, we must pay attention to the
privacy issues while mining the data. This has resulted in
the development of several privacy-preserving data mining
techniques. The random value distortion technique is one
among them. It attempts to hide the sensitive data by ran-
domly modifying the values. This paper questionsthe utility
of the random value distortion technique. The paper devel-
ops a random matrix-based spectral filtering technique to
retrieve original data from the dataset distorted by adding
random values. The proposed method works by comparing
the spectrum generated from the observed data with that of
random matrices. The paper presents the theoretical foun-
dation and extensive experimental results to demonstrate
that the random val ue distortion technique may not preserve
any data privacy after all.

Keywords: Privacy preserving data mining, value pertur-
bation, random matrices, eigenanalysis.

1 Introduction

Many homeland defense applicationsrequire mining het-
erogeneous data for creating profiles, constructing social
network models, detecting terrorist communicationsamong
others. Usually the data is very sensitive to privacy is-
sues. Financial transactions, healthcare records, and net-
work communication traffic are afew examples. Data min-
ing in such privacy-sensitive domains is facing growing
concerns. Therefore, we need to develop data mining tech-
niques that are sensitive to the privacy issue. This has fos-
tered the development of a class of data mining algorithms

*Computer Science and Electrical Engineering Department, University
of Maryland Baltimore County, USA.

T Computer Science and Electrical Engineering Department, University
of Maryland Baltimore County, USA.

¥school of Electrical Engineering and Computer Science, Washington
State University, USA.

Hillol Karguptal

K rishnamoorthy Sivakumar!

[1, 9] that try to protect the data privacy with varying de-
grees of success. Most of these algorithms try to extract
the data patterns without directly accessing the original data
and guarantees that the mining process does not get suffi-
cient information to reconstruct the original data.

This paper exploresthe random value perturbation-based
approach [1], awell-known technique for masking the data
using random noise. The idea is to preserve data privacy
by adding random noise, while making sure that the ran-
dom noise still preserves the signal from the data so that
the patterns can be closely estimated. This paper ques-
tions the privacy-preserving capability of the random value
perturbation-based approach and shows that the original
data can be accurately estimated from the perturbed data us-
ing a spectral filter that exploits some theoretical properties
of random matrices. It presents the theoretical foundation
and provides experimental results to support this claim.

Section 2 offers an overview of the related literature in
privacy preserving datamining. Section 3 describesthe ran-
dom data perturbation method proposed in [1]. Section 4
discusses the theoretical foundation of our approach that re-
lies on known properties of random matrices. Section 5 de-
scribes the random matrix-based eigen analysis methods to
extract the original dataset. Section 6 applies the proposed
technique and reports its performance for various data sets.
Finally, Section 7 concludes this paper and outlines future
research directions.

2 Reated Work

There exists a growing body of literature on privacy-
sensitive data mining. These algorithms can be divided
into two different groups. One approach adopts a dis-
tributed framework; the other approach adds random noise
to the datain such away that the individual data values are
distorted while still preserving the underlying distribution
properties at amacroscopic level. Thefollowing part of this
sections briefly discusses these two approaches.

The distributed approach supports computation of data
mining models and extraction of “patterns’ at a given node
by exchanging only the minimal necessary information

among the participating nodes without transmitting the raw
data. The field of distributed data mining [12, 19] pro-
duced severa distributed algorithms that are sensitive to
privacy. For example the meta-learning based JAM system
[25] was designed for mining multi-party distributed sen-
sitive data such as financial fraud detection. The Fourier
spectrum-based approach to represent and construct deci-
sion trees [13, 18], the Collective hierarchical clustering
[7] are examples of additiona distributed data mining al-
gorithms that can be used with minor modifications for
privacy-preserving mining from distributed data. I1n the re-
cent past, several distributed techniquesto mine multi-party
data have been reported. A privacy preserving technique
to construct decision trees [21] proposed elsewhere [15],
multi-party secured computation framework [20], associa-
tion rule mining from homogeneous [9] and heterogeneous
[27] distributed data sets are some examples. [11] reports
privacy preserving correlation computai on between datasets
owned by multiple parties. There also exists a collection of
useful privacy-sensitive data mining primitives such as se-
cure sum computation [22], secure scalar product computa-
tion [27].

Thereis also a somewhat different approach and the al-
gorithms belonging to this group works by first perturbing
the data using randomized techniques. The perturbed datais
then used to extracts the patterns and models. The random-
ized value distortion technique for learning decision trees
[1] and association rule learning [3] are examples of this
approach. Additional work on randomized masking of data
can be found elsewhere [26].

This paper explores the second approach [1] that works
by adding random noise to the data set in order to hide the
individual data values of different attributes. It points out
that in many cases the noise can be separated from the per-
turbed data by studying the spectral properties of the data
and as a result its privacy can be seriously compromised.
Before presenting the technique to do that, let us review the
randomized value distortion [1] techniquein details.

3 Random Value Perturbation Technique: A
Brief Review

For the sake of completeness, we now briefly review the
random data perturbation method suggested in [1]. We also
discuss the procedure for reconstructing the original data
distribution, as suggested in [1].

3.1 Perturbingthe Data

The random value perturbation method attempts to pre-
serve privacy of the data by modifying values of the sensi-
tive attributes using a randomized process [1]. The authors
exploretwo possible approaches - Value-Class Membership

and Value Distortion - and emphasize the Value Distortion
approach. In this approach, the owner of a dataset returns
avaue z; + r, where z; is the original data, and r is a
random value drawn from a certain distribution. Most com-
monly used distributions are the uniform distribution over
an interval [—a,] and Gaussian distribution with mean
= 0 and standard deviation o. The n origina data val-
ues i, xs, .- ., T, areviewed as realizations of n indepen-
dent and identically distributed (i.i.d.) randomvariables X ;,
1 =1,2,...,n, each with the same distribution as that of a
random variable X . In order to perturb the data, n indepen-
dent samples rq,rs,...,r,, ae drawn from a distribution
R. The owner of the data provides the perturbed values
1 + 71,2y + 1o, ..., 2, + 1, andthe cumulative distribu-
tion function F'r(r) of R. The reconstruction problemisto
estimate the distribution F'y (z) of the original data, from
the perturbed data.

3.2 Estimation of Distribution Function from the
Perturbed Dataset

Theauthors[1] suggest the following method to estimate
the distribution F'x (x) of X, given n independent samples
w; = x; + 71,0 =1,2,...,n and Fr(r). Using Bayes
rule, the posterior distribution function F'% () of X, given
that X + R = w, can be written as

_ ffoo fY(’lU - Z)fX(Z)dz
- 2 fy(w = 2) fx(2)dz’

which upon differentiation with respect to = yields the den-
sity function

Fy (x)

vy y(w—2)fx(x)
Ix @) = e e o (Ve

If we have n independent samples z; + r; = w;, ¢ =
1,2,...,n, the corresponding posterior distribution can be
obtained by averaging:

Vo I~ fy(wi—a)fx (@)
fi(@) =~ ; = Ao) (& 0

For sufficiently large number of samples n, we expect the
above density function to be close to the real density func-
tion fx (z). In practice, since the true density fx (z) isun-
known, we need to modify the right-hand side of equation
(1). The authors suggest an iterative procedure where at
eachstep j = 1,2, ..., the posterior density f% ' (z) esti-
mated at step j — 1 isused in the right-hand side of equation
(1). The uniform density is used to initialize the iterations.
The iterations are carried out until the difference between
successive estimates becomes small. In order to speed up
computations, the authors also discuss approximations to
the above procedure using partitioning of the domain of data
values.

4 Theory of Random Matrices

In this section, we discuss the general theory of random
matrices that is used to filter the noise from the perturbed
dataset to obtain an estimate of the actual dataset. Our fil-
tering approach is based on the observation that the distri-
bution of eigenvalues of random matrices [17] exhibit some
well known characteristics.

A random matrix is amatrix whose elements are random
variableswith given probability laws. Thetheory of random
matrices deals with the statistical properties of the eigenval-
ues of such matrices. Eigenvalues of random matrices offer
many interesting properties. For example, Wigner's semi-
circlelaw, which saysif X isann x n matrix and hasi.i.d.
entries with zero mean and unit variance, the distribution
of eigenvalues of)2(\%ﬁn has a probability density function
given by

Lon —)2, |z n
f(x)—{“(Z)2, el < von

0, otherwise.

In this paper, we are mainly concerned about distribution of
eigenvalues of the sample covariance matrix obtained from
arandom matrix. Let X be arandom m x n matrix whose
entriesare X;;,i =1,...,m,j = 1,...,n, aei.id. ran-
dom variables with zero mean and variance o 2. The covari-
ance matrix of X isgivenby Y = L X'X. Clearly, Y isan
n X n matrix. Let A\; < Xy < --- <)\, bethe eigenvalues
of Y. Let

Fo(zx) = % Z Uz — \i),

be the empirical cumulative distribution function (c.d.f.) of
the eigenvalues \;, (1 < < n), where

>
U(m):{l x>0
0 <0

is the unit step function. In order to consider the asymp-
totic properties of the c.d.f. F,,(x), we will consider the di-
mensionsm = m(N) andn = n(N) of matrix X to be
functions of a variable N. We will consider asymptotics
such that in the limit as N — oo, we have m(N) — oo,

n(N) = oo, and :’Z((IJ\\,’)) — @, where Q > 1. Under these
assumptions, it can be shown that [8] the empirical c.d.f.
F,(z) convergesin probability to a continuous distribution
function Fg (z) for every z, whose probability density func-

tion (p.d.f.) is given by
{ Q1 (@=Amin) (Amax—1)

nolx)\min <zr< Amax
0 otherwise,

fo(z) =
)

Receive Data

[Covariance | [
Matrix r—— Contering Data

| Calculation |
|

Covarianee ;

Matrix S or
| Ao and A

Elgenvectors of
actual data

’Eigﬂn A;m;l;tala 61‘:

Eigenvectors of
noisa

——

Noise

Figure 1. Main steps of the proposed spectral
filtering technique.

where Apin = o2(1 — 1/1/Q)? and A\pax = o2(1 +
1/4/Q)?. Further refinements of this result and other dis-
cussions can befoundin[24, 5, 16, 2, 4, 14, 28, 23].

5 Random Matrix-Based Data Filtering

Suppose actual data S is perturbed by a noise random
variable R to produce W = S + R. Let w; = s; + ry,
i =1,2,...,m, be m (perturbed) data points, each being
a vector of n features. Thus the perturbed dataset, can be
considered to be an m x n random matrix W, having n
features and m instances. Our proposed filtering technique
first calculates the covariance matrix of the perturbed data
W. Using the distribution of eigenvalues of the covariance
matrix, and the theory of random matrices, the covariance
matrix of W is decomposed into a noise part and an actual
data part. The eigenvectors correspondingto actual dataare
then used to reconstruct the actual data.

In the following section, we discuss some details of the
filtering procedure. We first assume that the entire distri-
bution F'r(r) of the random noise R is known. Later, we
discuss how the noise variance can be estimated from the
eigenvalue distribution of the perturbed data. Details of this
method and the supporting theory can be found in [10].

5.1 Known Noise Variance

When the noise distribution F'r(r) of R is completely
known, the noise variance o2 is first calculated. Equation

(2) isthen used to calculate A, and A,,:,. They provide
the theoretical bounds of the eigenstates corresponding to
noise. From the perturbed data, we computethe eigenvalues
of its covariance matrix Y, say Ay < Ay < -+- < \,. Then
we identify the noisy eigenstates A; < Xjpq1 < -+ < A
suchthat A; > Apin @d A; < Appgs. Theremaining eigen-
states are the eigenstates corresponding to actual data. Let,
V, =diag (Ai, Ait1, - - ., A;) bethe diagonal matrix with all
noisy eigenvalues, and A ,. be the matrix whose columns are
eigenvectors corresponding to the eigenvaluesin V,.. Simi-
larly, let V; bethe eigenvalue matrix for the actual data part
and A, be the corresponding eigenvector matrix which isa
n X k matrix (k < n). Based on these matrices, we decom-
posethe covariance matrix Y into two parts, Y and Y, with
Y =Y, +Y,, whereY, = A,V,. A, isthe covariance ma
trix correspondingto randomnoisepart,andY; = AV AL,
is the covariance matrix corresponding to actual data part.
Anestimate S of the actual data S isobtained by projecting
the data T on to the subspace spanned by the columns of
A,. Inother words, S = W A, A’ Figure 1 shows the flow
digram of the process described above.

Plot of Sinusoidal Feature,Estimated vs Actual Data

T T T T T
O Estimated data
—— Actual data
4

—--Value of Feature ———>

0 50 100 150 200 250 300
——- No of Instances ——>

Figure 2. Estimation of original sinusoidal
data with known random noise variance.

5.2 Unknown Noise Variance

When the noise variance o2 is unknown, we first esti-
mate it using the perturbed data. The estimated noise vari-
ance is then used to filter the perturbed data. In order to
estimate the noise variance o2 we first compute the eigen-
values of the covariance matrix Y™ of the perturbed data 1.
A histogram of the eigenvalue distribution is plotted and
compared to that of the theoretical noise eigenvalue density
function fg(z) given in equation (2). Note that the den-
sity function f(z) depends on the variance o2, Typicaly,

Distribution of EigenValues
T T

T R EE R R

10" +

——-Eigenvalue (log)-——>

Q Estimated Data
> Actual Data

+ Estimated Noise
10740 — Lambda (max) %%%*

— - Lambda (min) *
ambda (min; %**%**%%*

16 I I I I
0 5 10 15 20 25 30 35
—-—--No of features—--->

Figure 3. Distribution of eigenvalues of actual
data , and estimated eigenvalues of random
noise and actual data.

the theoretical density function fo(x) is a good fit to the
left portion of the histogram of the computed eigenvalues,
corresponding to small eigenvalues. The larger eigenvalues
that do not fit this theoretical density function correspond
to the actua information part of the perturbed data. An it-
erative procedure is employed to obtain the value of ¢ that
resultsin the best fit of fg () to the observed histogram.

6 Experimental Results

Our proposed method is used on datasets of different
sizes which have some trend in their values. The actual
dataset is distorted by adding Gaussian noise (Normally dis-
tributed random numbers with zero mean and specific vari-
ance), and our proposed techniqueis applied to recover the
actual data from the perturbed data with known noise vari-
ance. Experimental results show that the proposed method
estimates the individual data closely and also detects the
pattern of actual data. Figure 2 shows one such estimation
of datawhen the actual data has sinusoidal trend.

The distribution of eigenvalues shows (Figure 3) the
method accurately distinguishes between noisy eigen values
and eigenvalues corresponding to actual data. Note that the
estimated eigenvalues of actual datais very close to eigen-
values of actual data and almost overlap with them above
Amaz- Though there are no estimates of the eigenvalues
of actual data below the \,,;, axis, the estimation of ac-
tual datais fairly accurate, because the magnitudes of those
eigenvalues are very small and hence do not have any sig-
nificant impact on the whole estimation.

We used adataset of 300 instances and 20 featureswhich
has definite trend in its features. We added a Gaussian ran-

Plot of Estimated Data vs Actual Data

T T T T
—— Actual Data
O Estimated Data
3L

———Feature Value-——>

I I I
50 100 150 200 250 300
—-—No of Instances——>

Figure 4. Estimated dataset preserves the
'Plateau’ trend of original data.

dom noise with mean 0 and standard deviation o = 0.25
to each of these data values and applied our agorithm to
recover the actual data from the distorted data with known
noise o = 0.25. Figure 4, Figure 5 show estimations of
dataset with different types of trendsin their actual values.
The actual datasets have trends like plateau and triangles.
The proposed method estimates the values closely and pre-
servethe origina trend of the actual dataset.

Quality of recovery depends upon relative noise con-
tent of the data. The method performs poorly if relative
noise-content in the actual data is too high. We define the
term ‘ Signal-to-Noise Ratio’ (SNR) to quantify the relative
amount of noise added to actual datato perturb it.

B Vaue of Actual Data
" Vaue of Noise Added to the Data

Asthe noise added to the actual valueincreases, the SNR
decreases. Our experiments show that this method predicts
the actual data reasonably well up to a SNR value of 1.0
(i.e. 100% noise). The results shownin figures 2, 4, 5 are
the case of mean SNR value nearly 2, i.e. 50% noise. As
the SNR goes below 1, the estimation becomes too erro-
neous. Figure 6 shows the difference in estimation as the
SNR increases from 1. The upper figure shows the esti-
mation corresponding to 100% noise (mean SNR = 1), and
the lower figure shows estimation corresponding to 16.67%
noise (mean SNR = 6).

In case of unknown noise distribution, the method esti-
mates the noise variance first. From the eigenvalues of co-
variancematrix of actual data, a histogram of the eigenvalue
distribution is obtained, and thisis compared with best pos-
sible theoretical density function given by Equation 2. The

SNR

Plot of Estimated vs Actual Data

T T T T
—— Atual data
O Estimated data
25

—--value of Feature———>

I I I
0 50 100 150 200 250 300
——-=No of Instances —-—>

Figure 5. Estimated dataset preserves the 'Tri-
angular’ trend of original data.

variance corresponding to the best fit gives the estimation
of the noise variance.

To get the best estimation of variance, the algorithm es-
timates noise variance from the best fit curve several times.
Ineachtria , the variance estimation algorithm startswith a
very small variance value near zero, create the theoretically
generated distribution and measures the mean square error
between it and histogram of eigenvalues of actual data. It
thenincreasesvariance by asmall value, again computesthe
mean square error and compares it with the previous error
to get the minimum error and corresponding variance. The
algorithm does the said operation up-to a threshold value of
variance, and stores of the variance corresponding to min-
imum mean sgquare error between theoretically generated
density function curve and histogram of eigenvalues of ac-
tual data.That value of variance is treated as the estimated
value of noise variance for that particular trial.In our exper-
iment, we used 100 such trials for each variance estimation.
After the set of estimates are calculated from al trials, the
distribution of estimated variancesis checked for outliersin
them. The mean p; and standard deviation o, of the es-
timates are calculated , and values lying outside the span
1 £ 204 are discarded. During each trial, if the algorithm
does not get best fit within a predefined threshold value of
variance, it stores that threshold value of variance as the es-
timation. These values are al so treated as outliers at the end
and are discarded.

After discarding the outlier estimations, an average of
the rest of the estimates are taken to get the actual estimate
of noise variance. Discarding the outliers and taking av-
erage of the remaining number of estimate improves the
estimation accuracy to a large extent. Figure 7 shows the
theoretical density curve and distribution of actual eigen-

Estimation Accuracy Decreases with Decrese in SNr value

O Estimated data
—— Actual data

SNR = 1.0 (100% Noise)

—-—-Value of Feature——-—>

0 50 100 150 200 250 300

O Estimated data)
— Actualdata _ §
=
o

—--—-Value of Feature ———>

I
[¢] 50 100 150 200 250 300
fffff No of Instances ——--—-—-—>

Figure 6. A higher noise content (low SNR)
leads to less accurate estimation. SNR in up-
per figure is 1, while that for lower figure is
6.

values.The average over 100 estimates gives an estimated
variance of 0.66432 where the actual noise varianceis 0.68.
Although not all the estimates are always so close, on an
average, the difference between the estimated variance and
true variance remains within 10% of the actual variance in
al our experiments. Once the noise variance is estimated,
the same techniqueis applied as before to estimate the orig-
inal data. Figure 8 shows the estimation of actual data of
arelatively small dataset with high SNR when distribution
of noiseis not known. Figure 9 displays the distribution of
eigen values.

7 Conclusion and Future Work

Preserving privacy in data mining activitiesis avery im-
portant issue. This paper illustrates a noise filtering tech-
nique by which true data values can be estimated from the
perturbed values (by random noise). This raises questions
against the claim of preserving privacy by perturbing data
with random numbers and disclosing the perturbed dataset
aswell asthe probability distribution of the random number
generator. The proposed approach works by comparing the
empirically observed eigenvalue distribution of the given
datawith that of the known distribution of random matrices.
Thetheoretically known values of upper and lower limits of
the spectrum (eigenval ues) are used to identify the boundary
between the eigen-states due to noise and that of the actual
data.

This random matrix based approach to separate the ac-
tual dataand noisy eigen-states has potential computational
advantages. Indeed, since the upper bound A .« of the

EigenValue Density Functions : Actual vs Theoretical Value
25

T T
=¥ Eigenvalue Density Function of Actual Data
=0~ Theoretical Density Function of EigenValues

Estimated Variance = 0.66432

Actual Noise Variance = 0.68000

H
o
T
o

——- Density Function ———>
N
T

0.5

10° 10 10 10 10 10
—--EigenValues (log)-——>

Figure 7. Theoretical density function and the
actual distribution of eigenvalues.

noisy eigenvalues is known a priori, one can easily use a
suitable numerical technique (e.g., power method [6]) to
compute just the few largest eigenvalues. Once these eigen-
values and corresponding eigenvectors are computed, one
can obtain the actual-data-part of the covariance matrix,
which can be subtracted off from the total covariance to
isolate the noise-part of the covariance. The proposed ap-
proach is simple, and retrieves actual data with reasonable
precision. For the datasets considered in this paper, our ex-
perimental results support this claim. So, the method of
perturbing data with random number to hide their original
valueis not avery reliable method to preserve privacy.

This work points out a potential problem in the existing
literature. However, it leaves open the problem of coming
up with methods which can actually preserve privacy with-
out destroying statistical properties of the original dataset.
We believethat this can be done by first narrowing down the
specific pattern that we want to preserve through random-
ized perturbation. We hope that this work will encourage
data mining researchers to design privacy-preserving tech-
niquesthat pay careful attention to the properties of random
noise and their effect on preserving privacy.

Acknowledgments

The authors acknowledge supports from the United
States National Science Foundation CAREER award |1S-
0093353, NASA (NRA) NAS2-37143, and TEDCO, Mary-
land Technology Development Center.

—---Value of Feature--->

Plot of one Data Feature, Estimated vs Actual Signal

€ Estimated Data
=k Actual Data

50 T T

40t

30

20

-30 L I
0 5 10 15
——-=No of Instances——->

Figure 8. Estimation of actual data when the
noise distribution is not known.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

R. Agrawal and R. Srikant. Privacy-preserving data
mining. In Proceeding of the ACM SGMOD Confer-
ence on Management of Data, pages 439-450, Dallas,
Texas, May 2000. ACM Press.

Z.D. Bai, J W. Silverstein, and Y. Q. Yin. A noteon
the largest eigenvalue of a large dimensional sample
covariance matrix. Journal of Multivariate Analysis,
26(2):166-168, August 1988.

A. BEvfimievski, R. Srikant, R. Agrawal, and J. Gehrke.
Privacy preserving mining of association rules. In
Proc. of 8th ACM SIGKDD Intl. Conf. on Knowledge
Discovery an d Data Mining (KDD), July 2002.

S. Geman. A limit theorem for the norm of random
matrices. The Annals of Probability, 8(2):252—261,
April 1980.

U. Grenander and J. W. Silverstein. Spectral analysis
of networks with random topologies. SSAM Journal
on Applied Mathematics, 32(2):499-519, 1977.

J. E. Jackson. A User’s Guide to Principal Compo-
nents. John Wiley, 1991.

E. Johnson and H. Kargupta. Collective, hierarchi-
cal clustering from distributed, heterogeneous data.
In Lecture Notes in Computer Science, volume 1759,
pages 221-244, 1999.

D. Jonsson. Some limit theorems for the eigenvalues
of asample covariance matrix. Journal of Multivariate
Analysis, 12:1-38, 1982.

EigenValue Distribution

H
°

H
o,

EigenValue (log)-——>

,_.
o,

,_.
o,
T

Q Eigenvalue of Estimated Data
3 Eigenvalue of Actual Data

+ Eigenvalue of Estimated Noise *
= Lambda (max)

,_‘
o,

* * K

H
o,

= = Lambda (min)

53 6 8 10 12
——=No of Featurs ————>

Figure 9. Distribution of eigenvalues for the
estimations without the knowledge of noise
distribution.

(9]

[10]

[11]

[12]

[13]

[14]

M. Kantarcioglu and C. Clifton. Privacy-preserving
distributed mining of association rules on horizontally
partitioned data. In SSGMOD Wbrkshop on DMKD,
Madison, WI, June 2002.

H. Kargupta, S. Datta, and K. Sivakumar. Random
value perturbation: Does it really preserve privacy?
In Technical Report TR-CS-03-25,Computer Science
and Electrical Engineering Department, University of
Maryland, Baltimore County., 2003.

H. Kargupta, K. Liu, and J. Ryan. Random projec-
tion and privacy preserving correlation computation
from distributed data. In Technical Report TR-CS-03-
24, Computer Science and Electrical Engineering De-
partment, University of Maryland, Baltimore County.,
2003.

H. Kargupta, B. Park, D. Hershberger, and E. Johnson.
Collectivedatamining: anew perspectivetowardsdis-
tributed data mining. In Advancesin Distributed and
Parallel Knowledge Discovery, Eds: Kargupta, Hillol
and Chan, Philip. AAAI/MIT Press, 2000.

H. Kargupta, H. Park, S. Fittie, L. Liu, D. Kushrgj, and
K. Sarkar. MobiMine: Monitoring the stock market
from a PDA. ACM S GKDD Explorations, 3:37-47,
2001.

H. Kargupta, K. Sivakumar, and S. Ghosh. Depen-
dency detection in mobimine and random matrices.
In Proceedings of the 6th European Conference on
Principles and Practice of Knowledge Discovery in
Databases, pages 250-262. Springer, 2002.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Y. Lindell and B. Pinkas. Privacy preserving data min-
ing. In Advancesin Cryptology CRYPTO 2000, pages
36-54, August 2000.

V. A. Marcenko and L. A. Pastur. Distribution of
eigenvalues for some sets of random matrices. Math-
ematics of the USSR — Shornik, 1(4):457-483, 1967.

M. L. Mehta Random Matrices. Academic Press,
London, 2 edition, 1991.

B. Park, Ayyagari R., and H. Kargupta. A fourier
analysis-based approach to learn classifier from dis-
tributed heterogeneous data. In Proceedings of the
First SAM Internation Conference on Data Mining,
Chicago, US, 2001.

B. H. Park and H. Kargupta. Distributed data min-
ing: Algorithms, systems, and applications. InIn Data
Mining Handbook, To be published, 2002.

J. R. Quinlan. Induction of decision trees. In Machine
Learning, pages 81 — 106, 1986.

J. Ross Quinlan. Induction of decision trees. Machine
Learning, 1(1):81-106, 1986.

B. Schneier. Applied Cryptography. John Wiley and
Sons, 1995.

J. W. Silverstein. On the weak limit of the largest
eigenvalue of a large dimensional sample covariance
matrix. Journal of Multivariate Analysis, 30(2):307—
311, August 1989.

J. W. Silverstein and P. L. Combettes. Signal detec-
tion via spectral theory of large dimensional random
matrices. |EEE Transactions on Signal Processing,
40(8):2100-2105, 1992.

S. J. Stolfo, A. L. Prodromidis, S. Tselepis, W. Leg,
D. W. Fan, and P. K. Chan. Jam: Java agents for meta-
learning over distributed databases. In Proceedings
Third International Conference on Knowledge Dis-
covery and Data Mining, pages 74-81, Menlo Park,
CA, 1997. AAAI Press.

J. F. Traub, Y. Yemini, and H. Woz' niakowski. The
statistical security of a statistical database. ACM
Transactions on Database Systems (TODS), 9(4):672—
679, 1984.

J. Vaidya and C. Clifton. Privacy preserving asso-
ciation rule mining in vertically partitioned data. In
The Eighth ACM SIGKDD International conference
on Knowledge Discovery and Data Mining, Edmon-
ton, Alberta, CA, July 2002.

[28] Y.Q.Yin, Z.D.Bai, andP. R. Krishnaiah. Onthelimit

of the largest eigenvalue of the large dimensional sam-
ple covariance matrix. Probability Theory and Related
Fields, 78(4):509-521, August 1988.

Detecting Cyber Attacks with Fuzzy Data Mining Techniques

Jonatan Gomez*

Abstract

This paper investigates behavior-based techniques for
detecting intrusion/anomalies. We applied techniques
based on modeling the normal behavior (positive char-
acterization), i.e., based on a set of normal usage data.
Our work attempts to handle the inherent uncertainty
in the usage data and in the decision making process
using fuzzy sets to describe the input parameter space
and the normal behavior patterns. In this way, we in-
tegrated efficient fuzzy clustering and recognition tech-
niques that can characterize the abnormal behavior to
determine cyber attacks. In particular, we investigated
clustering methods that allow data points to belong to
more than one cluster with a non-crisp degree (fuzzy
membership degree). It can yield an accurate model
even in the presence of noise or outliers, can automat-
ically determine the number of clusters, and can yield
elastic models that can easily adapt to fluctuations in
the monitored system behavior. Also, we used normal
usage data to build models for abnormal behavior (nega-
tive characterization) in the complement space. Finally,
we applied an evolutionary strategy for evolving a set of
fuzzy rules in order to build a decision support system
for the detection of cyber attacks. Experiments with
synthetic and real data sets are performed in order to
show the applicability of the proposed approach and to
compare with other works reported in the literature.

keywords: Cyber-attacks, Intrusion, Fuzzy, Grav-
itational, Immune, Evolution

~ *Jonatan Goémez is with Computer Science Division, Mathe-
matical Sciences Department, University of Memphis, TN 38152
USA (e-mail:jgomez@memphis.edu) and also with Departamento
de Ingenierfa de Sistemas, Universidad Nacional de Colombia,
Ciudad Universitaria, Bogota, Colombia.

fDipankar Dasgupta is with Computer Science Division, Math-
ematical Sciences Department, University of Memphis, TN 38152
USA (e-mail:dasgupta@mempbhis.edu).

fFabio Gonzalez is with Computer Science Division, Mathe-
matical Sciences Department, University of Memphis, TN 38152
USA (e-mail:fgonzalz@memphis.edu) and also with Departa-
mento de Ingenieria de Sistemas, Universidad Nacional de Colom-
bia, Ciudad Universitaria, Bogot4, Colombia.

Dipankar Dasguptaf

Fabio Gonzalez}

1 Introduction

Nowadays, cyber-terrorism is a potential threat to or-
ganizations and countries that have become more de-
pendent on the cyberspace [1]. Securing cyberspace is
a challenging task which requires innovative solutions
to deal with cyber-terrorism in all its forms and man-
ifestations. One of the cyber terrorism’s manifestation
is the illegal intrusion into the computer resources of
an organization. This illegal access has the objective
of extracting, modifying or damaging sensible informa-
tion of the target organization. Detecting this threat
and responding accordingly are the main tasks of intru-
sion detection tools. The problem of Intrusion Detection
(ID) has been studied extensively in computer security
[2, 3, 4, 5] and has received a lot of attention in machine
learning and data mining [6, 7, 8, 9, 10, 11]. The ID
problem can be defined as classifying system behavior
patterns in two basic categories (normal and abnormal).
The following are some of the data mining approaches
used in solving the intrusion detection problem:

o Classical association rules and frequent episodes
learning [8]. These techniques are applied over
system audit data to extract consistent and use-
ful patterns of programs and user behavior. These
patterns are used to build classifiers that can rec-
ognize abnormal behavior.

o Temporal association rules, in terms of multiple
time granularities [11, 12]. These techniques gener-
ate fuzzy and classical temporal association rules.

o Decision trees [13]. Normal behavior is used to
generate artificial abnormal behavior and a decision
tree is generated from these samples.

Because it is hard to build a set of patterns that
represents all the abnormal behavior (new intrusion
techniques are developed every day around the world),
several approaches have tried to build a classifier by
using only a set of patterns of the normal behavior
[13, 14, 15]. Techniques for building intrusion detection
systems by using only normal patterns can be classified
as follow:

1. Negative Characterization: The normal patterns
are used for building a model of the abnormal space;

for example, by generating a set of rules (detectors)
that can recognize abnormal patterns [14, 16, 17].

2. Positive characterization: The normal patterns are
used for building a model of the normal space (set
of rules that defines the normal patterns) [8, 12, 15].

3. Artificial anomalies generation: The normal pat-
terns are used for generating artificial abnormal
samples and a classifier learning technique is used
for generating the classifier [13, 18].

In this paper, we combine the fuzzy gravitational clus-
tering algorithm proposed by Gomez et al. [19] with the
fuzzy anomaly identification signatures approach pro-
posed by Gomez et al. [20], and with the evolution
of fuzzy rules proposed by Gomez et al. [21, 22|, for
solving some well-studied intrusion detection problems.
In this approach, the gravitational clustering algorithm
will generate a good set of clusters that represents the
normal behavior (normal space), and the fuzzy cluster
analysis will give a better definition of the boundaries
between normal and abnormal spaces. In the other
hand, the Fuzzy anomaly identification signatures ap-
proach will generate a set of good fuzzy rule detectors
for the abnormal space. Finally, the fuzzy rules, gener-
ated with the evolutionary algorithm, will classify the
abnormal behavior in different intrusion types in order
to produce an appropriate answer.

The subsequent sections are organized as follows:
section 2 briefly describes the gravitational clustering
algorithm, the fuzzy anomaly identification signatures
and the evolution of fuzzy rules process; section 3
presents the proposed approach to solve some intrusion
detection problems; section 4 describes experiments
and analysis of results; finally, section 5 draws some
conclusions.

2 Background

2.1 Fuzzy Gravitational Clustering (FGC) We
developed a robust clustering technique based on the
gravitational law and Newton’s second motion law [19].
In the gravitational clustering technique, for an n-
dimensional data set with N data points, each data
point is considered as an object in the n-dimensional
space with mass equal to 1. The movement of each point
z in the data set due to the gravitational field generated
by another point (y), which is randomly chosen, is
approximated by using the following dynamic equation:

2(t+1) = (t) + ﬁﬁ (2.1)

where, d = 7 — 7 and G is a gravitational

constant. This is a computational approximation of
the Newtonian movement equation: the velocity of an
object is considered equal to zero at any time (v(t) = 0),
and the time interval length is equal to one (A(t) =
1). In this way, the algorithm does not use extra
memory for storing the velocity vector of each data
point, and it is faster too. It is clear, due to a constant
gravitational force, that all the points will be moved
to the same position (big crunch) after a large number
of iteration. To eliminate this limit effect, we reduced
the gravitational constant G in a given proportion in
each iteration (decay term: A(G)). In each iteration,
the algorithm starts to create the clusters by using a
disjoint set structure and the distance between objects
(after applying the gravitational force). The basic ideas
behind applying the gravitational law are:

1. A data point in some cluster exerts a higher grav-
itational force on a data point in the same cluster
than on a data point that is not in the cluster.
Then, points in a cluster move in the direction of
the center of the cluster. In this way, the proposed
technique will determine automatically the clusters
in the data set.

2. If some point is a noise point, i.e., does not belong
to some cluster, the gravitational force exerted on
it for another point is so small that the point is
almost immobile. Then, the noise points will not
be assigned to any cluster.

In a single iteration, for each data point, another data
point is randomly selected, and the two points are
moved according to equation 2.1. Clearly, each iteration
of the gravitational clustering algorithm is linear on the
size of the normal data set used as training (in time and
in space).

We used the gravitational clustering algorithm in
order to perform anomaly detection [23]. The process is
as follows: the gravitational clustering algorithm is run
with all or a portion of the normal data patterns in order
to generate a set of clusters that represents the normal
behavior. Then, each normal pattern is assigned to the
closest cluster. After that, some statistical information
as cluster radius, average cluster distance, min values
and max values per components are calculated. With
this statistical information, two fuzzy membership func-
tions are defined for each cluster generated. One fuzzy
membership function takes into account the radius and
average radius of the cluster (hyper-sphere model), and
the other fuzzy membership function takes into account
the min and max values per component (hyper-rectangle
model). Finally, these two fuzzy membership functions
are combined with a T-norm operator (average min) to

calculate the membership function of a cluster k&, see
equation 2.2.

2% f () * gr (x)
Fy () =
(=) fr (%) + g (2)
Here, fr(z) is the fuzzy membership generated by

the hyper-sphere model, and gi(z) is the membership
function generated by the hyper-rectangle model.

(2.2)

2.2 Fuzzy Anomaly Identification Signatures
(FAIS) Forrest et al. [24] developed a negative se-
lection algorithm (NSA) that can be used for discrim-
inating between the normal and abnormal behavior in
a computer system. Such negative-selection algorithm
can be summarized as follows ([25]):

e Define normal as a collection S of elements in
a feature space U, a collection that needs to be
monitored. For instance, if U corresponds to the
space of states of a system represented by a list of
features, S can represent the subset of states that
are considered as normal for the system.

e Generate a set R of rule detectors, each of which
fails to match any string in S. Therefore, each
rule detector defines a signature that can be used
for identifying anomaly behavior. One simple
approach for generating such rule detectors is to
generate random rule detectors and discard those
that match one or more elements in the normal
set S. However, a more efficient approach will
try to minimize the number of generated rule
detectors while the covering of the abnormal space
is maximized.

e Monitor S for changes by continually matching
the detectors in R against S. If any detector ever
matches, then a change is known to have occurred,
as the detectors are designed not to match any of
the original strings in S.

Approaches inspired on this idea have been applied suc-
cessfully to perform anomaly detection on computer
networks systems [26, 27, 28]. We modified this idea
in order to use a non-binary representation [14], and
we extended it to use fuzzy rule detectors instead of
crisp rule detectors [20]. In this approach [20], the
normal /abnormal space corresponds to the hypercube
[0,1]"; therefore, an element z in this space is repre-
sented by a vector (z1,...,Z,), where z; € [0,1]. For
each attribute x;, a fuzzy division of the real interval
[0, 1] defines the basic fuzzy sets or linguistic values that
such attribute can take. In our experiments, the basic

fuzzy sets correspond to a fuzzy division of the real in-
terval [0, 1] using triangular and trapezoidal fuzzy mem-
bership functions. Figure 1 shows an example of such a
division using five basic fuzzy sets representing the lin-
guistic variables Low, Medium-Low, Medium, Medium-
High and High.

&

—
L}

L ML M MH H

Membership Degree

01860333 05 06660833 1_0-
Universe of Discourse |

Figure 1: Partition of the interval [0,1] in basic fuzzy
sets.

Let P, = {P;1,Piz2,.., Pim} to be the fuzzy sets
defined by the attribute 7. A fuzzy rule detector has the
following structure:

If 1 € fl AN...xp € fn then abnormal

Here, (z1,...zy) is an element of the normal /abnormal
space being evaluated, A is a fuzzy conjunction operator
(in our case, min()), T; is a subset of basic fuzzy sets
(T; C P;), and CZA’z is defined as:

ﬁz U YJ
YEeT;

where |J corresponds to a fuzzy disjunction operator.
We used the addition operator defined as follows:

pau(x) = min{ua + pp,1}.
Given a set of rules:
RY: If Cond; then abnormal

R™: If C(Cond,, then abnormal,
the abnormality degree of a sample z is defined by
“non_self(x) = [mex {Cond;(x)} .

Here, Cond; is the condition part of the rule R,
Cond;(z) is the fuzzy true value produced by the
evaluation of Cond; in x, and py, ., self(2) represents
the degree of membership of z to the abnormal set.
Thus, a value close to 0 means that = is normal and
a value close to 1 indicates that it is abnormal.

2.3 Evolution of Fuzzy Rules In previous work
[21, 22], we evolved fuzzy rules for solving some well
known intrusion detection problems . The proposed
approach, called EFRID (Evolution of Fuzzy Rules
for Intrusion Detection), uses an evolutionary algorithm
that does not need parameter settings (only population
size and number of iterations). In general, an evolved
linguistic classifier rule has the following form:

If 1,€5] opy 12€855 ... 0pp_1 2, €S, Then Class m

where
e 1; €[0.0,1.0], is an attribute or linguistic variable;
e S5, €L, ML, M, MH, H, is a fuzzy set; and
e op; €AND, OR, is a Fuzzy-Boolean operator.

In this work, the attribute values are normalized in
the interval [0,1], and fuzzy sets are defined by the
membership functions shown in Figure 1. A fuzzy
classifier model can be represented by a set of m — 1
rules, where m is the number of different classes; that
is, m classes are represented by m — 1 rules. One rule
is associated with only one class. For example,

R;: If Cond; then class is C}

R,_1: If Cond,_1 then classis Cp_1

The class that has not associated some rule is con-
sidered as default class, i.e., if the set of rules does not
classify an element then the element is considered in
the default class. In order to classify an unclassified el-
ement (1, ...,%,), which is represented by a vector of
attributes, the condition part of each rule is evaluated
using the membership functions and the fuzzy-set op-
erators. Then, the rule with the highest value in the
condition is selected, and the element is classified ac-
cordingly to the consequent part of that rule. If all the
rules have confidence 0.0 or lower than a fire thresh-
old, the element is classified in the default class. In our
experiments, we considered the normal class as default
class.

In general, the condition part of a rule corresponds
to a logic expression, which can be represented by
an expression tree; a linear chromosome with variable
length is used to represent this expression tree [22].
A genetic algorithm (GA), which does not require
operators probabilities setting, with special operators
is applied to evolve the rules. A GA run evolves a
rule; so, multiple runs are needed to cover all classes
in the training set (excluding the default class). The
elements in the training set that belong to the class of

the respective run are considered positive examples, and
the elements that belong to other classes are considered
negative examples. Since there is a different GA run
for each class, we do not have to represent the action
part of the rule in the chromosome; it only represents
the condition part. A fuzzy rule is represented using
complete expression trees [22].

3 Combining FGC, FAIS and EFRID

We divided the intrusion detection task in three mod-
ules, (see Figure 2):

1. In the first module, a fuzzy deviation level of the

monitored parameters from the normal behavior is
calculated (using FGC and FAIS).

2. In the second module, the vector of monitored
parameters is classified in one of the possible attack
class (using EFRID).

3. In the third module, the deviation level and the
predicted attack information are combined for de-
termining if the vector is an attack or not.

Because the FGC algorithm gives a fuzzy member-
ship value to the normal space (positive characteriza-
tion), we use the fuzzy negation operator for determin-
ing the deviation level from the normal space calculated
by the FGC algorithm:

FGCyeo(z) = FGC(z) = 1 — FGC(z). (3.3)

The fuzzy deviation level of a vector of monitored
parameters is calculated as the minimum fuzzy devia-
tion level due to the FGC and the FAIS algorithms.

DEV (z) = min {FAIS(z), FGCgey(x)} . (3.4)

We used the EFRID algorithm for generating a
fuzzy classifier for the known attacks (the normal class
is considered as default class). In this way, the second
module calculates an abnormality value of a vector of
monitored parameters (the fuzzy rule value).

In the third module, the information generated by
the deviation module is combined with the information
provided by the classification module. We use the
multiplication fuzzy-and operator in this module.

FIDS(z) = DEV(z) * EFRID(z). (3.5)

There are two elements that define the cost function
of an anomaly detection system: the false alarm rate
(FA), the system produces an alarm in normal condi-
tions, and the detection rate (DR), the system detects

v

DEVIATION MODULE

FGC FATS

\tﬁ/

v

CLASSIFICATION
MODULE

EFRID

Deviation Attack
confidence

BIDDING MODULE

Figure 2: Combining Fuzzy Gravitational Clustering (FGC), with Fuzzy Anomaly Identification Signatures (FAIS)
and the Evolution of Fuzzy Rules for Intrusion Detection (EFRID).

an attack. A good intrusion detection system is one
that has low FA and high DR. In general, positive char-
acterization techniques generate a low false alarm and
detection rates, whereas negative characterization tech-
niques generate a high false alarm and detection rates
(see Figure 3).

— Normal space

MNegative Characterization
Positive Characterization

Figure 3: Positive and Negative Characterization Tech-
niques Comparison

We combined the FGC, FAIS, and EFRID modules
in order to achieve two goals with FIDS. Our first goal
is to provide a better characterization of the normal-
abnormal space by combining FGC and FAIS. In this
way we want that FIDS keeps the low false alarm rate
provided by the FGC algorithm (or similar) while reach-
ing the detection rate provided by the FAIS technique.
In this way, the double fuzzyfication (FGC and FAIS)

of the normal-abnormal boundaries will provide a more
useful definition of normalcy. Our second goal is to pro-
vide a good classification of the monitored behavior as
abnormal with the EFRID module. This characteriza-
tion will provide a good strategy for answering correctly
to possible attacks.

4 Experimental Results

In order to determine the performance of the proposed
approach, experiments were conducted with two differ-
ent data sets as shown in Table 1. We used 50% of
the data set, randomly selected, as training set and the
remaining 50% as testing set. We generated the train-
ing and testing data sets in such a way that they have
the same number of records from each class. Also, we
generated a normal training data set (a set with only
normal samples from the training set). We used the nor-
mal training data set in the FGC and FAIS approaches,
while we used the full training data set in the EFRID
approach. In order to compare the performance of the
proposed approach, we generated a ROC curve [29] for
each algorithm used.

Table 1: Data sets used for experimentation

Data Set Number of Samples
Normal | Abnormal
Simple ML 1000 150
KDD-Cup 99 95278 396743

4.1 Parameters Setting We defined a set of param-
eters values for each of the techniques used here: FGC,
FAIS, and EFRID.

4.1.1 FGC Because it is possible to use a portion of
the normal training data set in the gravitational clus-
tering algorithm for generating a good set of clusters,
see [19], only a 10% of the training data set was used
by the FGC algorithm. The reported results were ob-
tained using the following parameter values: gravita-
tional force, G = le — 4; gravitational force decreas-
ing factor, A(G) = 0.01; clusters size, @ = 0.01; ep-
silon, ¢ = 1le — 6; and maximum number of iterations,
M = 100.

4.1.2 FAIS The reported results were obtained with
the following set of parameter values: population size,
PS = 200; number of samples per individual, §S = 400;
number of fuzzy sets per attribute, LV = 5 (as shown
in 1); and number of iterations, M = 1000.

4.1.3 EFRID The reported results were obtained
with the following set of parameter values: population
size, PS = 200; number of samples per individual,
SS = 400; number of fuzzy sets per attribute, LV =5
(as shown in 1); and number of iterations, M = 1000.

4.2 KDD Cup 99

4.2.1 Description This data set is a version of the
1998 DARPA intrusion detection evaluation data set
prepared and managed by MIT Lincoln Labs!. Exper-
iments were conducted on the 10% that is available at
the University of Irvine Machine Learning repository 2.
Forty-two attributes, that usually characterize network
traffic behavior, compose each record of the 10% data
set (22 of them numerical). Also, the number of records
in the 10% is huge (492021).

We generated a reduced version of the 10% data
set including only the numerical attributes, i.e., the
categorical attributes were removed from the data set.
Therefore, the reduced 10% data set is composed of 33
attributes. The attributes were normalized between 0
and 1 using the maximum and minimum values found.

4.2.2 Results Figure 4 shows the ROC curves gen-
erated by the FGC, FAIS, and FIDS.

As expected, while FGC reaches low FA and DR
values (FGC is a positive characterization technique),
FAIS reaches a high FA and DR values, (FAIS is a

TMit Lincoln labs. 1999 Darpa Intrusion Detection Evaluation.

http://www.ll.mit.edu/IST/ideval/index.html
?http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

Detection rate

L L L L L L L
0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 0.5
False alarm rate

Figure 4: Roc curve generated for the KDD Cup 99 data
set

negative characterization technique). Clearly, FIDS
shows the performance desired: It keeps the low FA
rate provided by the FGC algorithm while reaches the
DR provided by the FAIS algorithm. FIDS reaches a
DR of 98.7%, while it keeps a low FA rate (< 1%).
Table 2 compares the performance reached by FIDS
against some results reported in the literature. As
shown FIDS performs very well compared with such
methods. Also, the reduction of FA rate compared with
EFRID is significant, (6%).

| Approach | FA% | DR% |
FIDS 0.9 | 98.70
EFRID [21] 70 | 98.95
RIPPER-AA[13] | 2.02 | 94.26
SMARTSIFTER|30] - 82.0

Table 2: Comparative Performance

The EFRID algorithm generated a set of four fuzzy
rules, one for each main attack classification: Denial
of Service (DoS), Probe (PRB), Remote to Local (R2L)
and User to Root (U2R), (see [21]). The rules generated
by EFRID are shown in Figure 5.

Figures 6 and 7 show the ability of the EFRID
algorithm for extracting useful fuzzy rules from the
training data set. In these figures, the data set is shown
according to the attributes used in the condition parts
of the fuzzy rules. Figure 6 shows the data set according
to the attributes used in the condition part of the DoS
fuzzy rule. As shown, almost all the DoS records have
a count value higher than 0.2. Since we defined a fuzzy
division of each attribute as shown in Figure 1, these
values (> 0.2) can be easily characterized as not count.

if count is not low or same srv_rate is low
then record-type is DoS

if dst_host rerror rate is not low

then record-type is PRB

if dst_host same src_port rate is not low and
count is not high then record-type is R2L

if src_ bytes is medium-high

then record-type is U2R

Figure 5: Fuzzy rules evolved by EFRID

Similarly, the attribute same_srv_rate can be used to
characterize many of the DoS samples that were not
identified by the not count part of the rule. Therefore,
the EFRID fuzzy rule characterizes the DoS attack very
well. In the same way, figure 7 shows the data set
(without the DoS records) according to the attributes in
fuzzy rules PRB, and U2R. As shown these fuzzy rules
are useful for discriminating among different attacks.

Finally, the classification accuracy reached by FIDS
is shown in table 3 along with the performance of the
winner group in the KDDCup’ 99 contest [31]. However,
these results are not comparable because different data
sets were used for testing. So, this information is
for reference only. The numbers between parenthesis
indicate the percentage of samples from the class that
were classified as abnormal.

| CLASS | FIDS | WINNER ENTRY |
Normal 98.70% 94.50%
U2R 0.0% (17.24%) 13.20%
R2L 12.33% (12.5%) 8.40%
DoS 95.50% (98.64%) 97.10%
PRB 20.69% (76.0%) 83.30%

Table 3: Classification Accuracy

4.3 Multi-Level Network Traffic Data

4.3.1 Description The Cougaar Intrusion Detection
System (CIDS) is a system that allows detection of
intrusions in a computer network. Written on Java
language and using the Cougaar agent architecture?,
this tool was developed by the Intelligent Security
System Research Lab (ISSRL) at the University of
Memphis. CIDS allows the monitoring at different
levels (process, user, network) of several computer
network host parameters. Table 4 shows the twenty-
one parameters monitored in CIDS.

Shttp://www.cougaar.org/

Data of a computer host (target) behavior (under
attack and in normal conditions) were collected during
several hours in intervals of time of 10 seconds. Two
attacks were performed over the target host, a PRB
attack using the mmap scan tool and U2R by using a
secure shell hacking tool (ssh).

4.3.2 Results The proposed approach (FIDS) was
able to discriminate the normal behavior from the
abnormal behavior in all the cases. Moreover, the
classification of the possible attack was almost perfect.
In 99.97% of the testing cases, FIDS was able to classify
correctly the attacks launched against the computer
host. The set of fuzzy rules generated in this case were:

if UsedSwapRam is not high and RemotePack-
etsSent is low then record-type is ssh-hack

if RemotePacketsSent is not low then record-type
is nmap

Figure 8 shows the data set according to the at-
tributes used in the condition part of the fuzzy rules
generated by EFRID. As shown, the fuzzy rules gener-
ated by EFRID are very good for differentiating among
the abnormal classes and also for differentiating among
the normal and the abnormal classes.

5 Conclusions

This paper combines a fuzzy gravitational clustering al-
gorithm [19] with the fuzzy anomaly identification sig-
natures approach [20], and the evolution of fuzzy rules
proposed [21, 22|, for solving some well-studied intru-
sion detection problems. It is shown that combining
positive characterization techniques with negative char-
acterization techniques can help in the reduction of the
FA rate while the DR is kept high. Also, It is shown that
evolution of fuzzy rules for classifying the monitored be-
havior can help in the determination of the appropriate
answer for specific attacks when they are detected by
the deviation module (FGC and FAIS techniques).

The experimental results showed that fuzzy analysis
can improve the performance of an intrusion detection
system.

6 Acknowledgments

This work was supported by the Defense Advanced
Research Projects Agency (F30602-00-2-0514).

References

[1] J. Schwartz, “Cyberterrorists sharpening their tools for
online war fare.,” International Herald Tribune, 2003.

[2] E. Amoroso, Intrusion Detection. Intrusion.net Books,
1999.

3]

[4]

[5]

[6]

[7]

18]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

R. Heady, G. Luger, A. Maccabe, and M. Sevilla, “The
Architecture of a Network-level Intrusion Detection
System,” Tech. Rep. CS90-20, University of New Mex-
ico, Albuquerque.

S. Axelsson, “Intrusion Detection Systems: A Survey
and Taxonomy,” Tech. Rep. 99-15, Chalmers University
of Technology, Dept. of Computer Engineering, Mar.
2000.

J. Allen, A. Christie, W. Fithen, J. McHugh, J. Pickel,
and E. Stoner, “State of the Practice of Intrusion Detec-
tion Technologies,” Tech. Rep. CMU/SEI99-TR-028,
ESC-99-028, Carnegie Mellon, Software Engineering
Institute, Pittsburgh, 1999.

J. Sundar, D. Garcia-Fernandez, E. Spafford, and
D. Zamboni, “An Architecture for Intrusion Detection
using Autonomous Agents,” Tech. Rep. 98/05, Purdue
University, 1998.

M. Crosbie, “Applying Genetic Programming to Intru-
sion Detection,” in AAAT 1995 Fall Symposium Series,
Nov. 1995.

W. Lee, S. Stolfo, and K. Mok, “Mining Audit Data
to Build Intrusion Detection Models,” in International
Conference Knowledge Discovery and Data Mining
(KDD’98), pp. 66-72, 1998.

W. Lee, S. J. Stolfo, and K. W. Mok, “A data mining
framework for building intrusion detection models,” in
IEEE Symposium on Security and Privacy, pp. 120—
132, 1999.

W. Lee, S. Stolfo, and K. Mok, “Mining in a data-flow
environment: Experience in network intrusion detec-
tion,” in Proceedings of the Fifth International Confer-
ence on Knowledge Discovery and Data Mining (KDD-
99) (S. Chaudhuri and D. Madigan, eds.), pp. 114-124,
1999.

Y. Li, N. Wu, S. Jajodia, and X. S. Wang, “Enhancing
profiles for anomaly detection using time granularities.”
S. Bridges and R. Vaughn, “Fuzzy Data Mining and
Genetic Algorithms Applied to Intrusion Detection,”
in Twenty Third National Information Security Con-
ference, Oct. 2000.

W. Fan, W. Lee, M. Miller, S. Stolfo, and P. Chan,
“Using artificial anomalies to detect unknown and
known network intrusions,” in Proceedings of the first
IEEE International conference on Data Mining, 2001.
D. Dasgupta and F. Gonzalez, “An immunity-based
technique to characterize intrusions in computer net-
works,” IEEE Transactions on Evolutionary Computa-
tion, vol. 6, pp. 281-291, 1999.

S. Hofmeyr, A. Somayaji, and S. Forrest, “Intrusion
Detection Using Sequences of Systems Call,” Computer
Security, no. 6, pp. 151-180, 1998.

F. Gonzalez and D. Dasgupta, “An immunogenetic
technique to detect anomalies in network traffic,” in
Proceedings of the genetic and evolutionary compuation
conference, GECCO 2002, pp. 1081-1088, Morgan
Kaufman Publishers, 2002.

D. Dasgupta and S. Forrest, “An anomaly detection
algorithm inspired by the immune system,” Artificial

[18]

[19]

[20]

[21]

[22]

23]

[24]

25]

[26]
27]

28]

[29]

[30]

31]

immune systems and their applications, pp. 262-277,
1999.

F. Gonzalez and D. Dasgupta, “Neuro-immune and
self-organising map approaches to anomaly detection:
A comparison,” in Ist International Conference on
Artificial Immune Systems, Sept. 2002.

J. Gomez, D. Dasgupta, and O. Nasraoui, “A New
Gravitational Clustering Algorithm,” in To appear
in the Proceedings of the Third SIAM International
Conference on Data Mining 2003, 2003.

J. Gomez, F. Gonzalez, and D. Dasgupta, “An
Immuno-Fuzzy Approach to Anomaly Detection,” in
To appear in the Proceeding of the IEEE International
Conference on Fuzzy Systems FUZZIEEE 2003, 2003.
J. Gomez and D. Dasgupta, “Evolving Fuzzy Classifiers
for Intrusion Detection,” in Proceedings of the 2002
IEEE Workshop on Information Assurance, June 2002.
J. Gomez, D. Dasgupta, O. Nasraoui, and F. Gonzalez,
“Complete expression trees for evolving fuzzy classifiers
systems with genetic algorithms,” in Proceedings of
NAFIPS-FLINT joint conference, June 2002.

J. Gomez and D. Dasgupta, “Combining Gravitational
Clustering and Fuzzy Cluster Analysis For Anomaly
Detection.” Submited to the Eighteenth International
Joint Conference on Artificial Intelligence (IJCAI-03).
S. Forrest, A. Perelson, L. Allen, and R. Cherukury,
“Self-nonself discrimination in a computer,” in Proceed-
ings of the IEEE Symp. on research in security and
privacy, 1994.

D. Dasgupta, “An overview of artificial immune system
and theri applications,” Artificial immune systems and
their applications, pp. 3-23, 1999.

D. Dasgupta. Springer-Verlag, 1999.

S. Hofmeyr and S. Forrest, “Architecture for an ar-
tificial immune system,” Ewvolutionary Computation,
vol. 8, no. 4, pp. 443-473, 2000.

J. Kephart, “A biologically inspired immune system for
computers,” in Procedings of Artificial Life, (Cambrige
M,A), pp. 130-139, 1994,

F. Provost, T. Fawcett, and R. Kohavi, “The case
against accuracy estimation for comparing induction
algorithms,” in Proceedings of 15th intenational con-
ference on machine learning, p. 445;453, 1998.

K. Yamanishi, J. Takeuchi, and G. Williams, “On-line
unsupervised outlier detection using finite mixtures
with discounting learning algorithms,” in Proceedings
of the Sizth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 320—
324, 2000.

“Results of the kdd’ 99 classifier learning contest..”
http://www-cse.ucsd.edu/users/elkan/clresults.html.

1.2 T T T T T T

1F IR - DX + X + X DO MK B
4
0.8 + X ,
2
s 06 X i
2
B‘ *X
)
5 o4f ¥ .
[
+><><

Nogmal +
0 0s X
PRB x
R2L O
U2R =
-0.2 1 1 1 1 I I
0.2 0 0.2 0.4 0.6 0.8 1 1.2

count

Figure 6: Projection of the KDDCup data set using the DoS classification attributes.

12 T T T T T T
1F K RO X X X X E
X
0.8 X ,
2
[
06 B
2
9 x
|
g
< 0.4 X ,
g X
0.2 X i
*
*
0 HHHHHHHE HE HHH T + +%W#Wmal T
PRB x
R2L o
UR =
-0.2 1 1 1 I I I
-0.2 0 0.2 04 0.6 0.8 1 12

src_bytes

Figure 7: Projection of the KDDCup data set using the PRB and U2L classification attributes.

PARAMETER

PARAMETER

| PARAMETER

LOCAL_SENT_ BYTES

REMOTE RECEIVED PACKETS

PROCESSES _ZOMBIE

LOCAL_ RECEIVED BYTES

PROCESSES

USED_PHYSICAL RAM

LOCAL_SENT_ PACKETS

PROCESSES_ROOT

USED_SWAP_RAM

LOCAL_ RECEIVED PACKETS

PROCESSES _USER

LOGINS

REMOTE_SENT_BYTES

PROCESSES_BLOCKED

FAILED LOGINS

REMOTE_RECEIVED_ BYTES

PROCESSES _RUNNING

REMOTE_LOGINS

REMOTE_SENT PACKETS

PROCESSES WAITING

CPU_USERS

Table 4: Monitored parameters with CIDS (Cougaar based Intrusion Detection System).

12

1F W

06 |

04 |

Used Swap Ram

02|

0.2 L

Normal
ssh hack

* i

xX +

*

nmap

-0.2 0

0.2 0.4 0.6 0.8
Remote Packets Sent

1 12

Figure 8: Attributes used in the EFRID fuzzy rules for classifying the CIDS data set.

Near Linear Time Detection of Distance-Based Outliers and

Applications to Security

Stephen D. Bay! and Mark Schwabacher?

"nstitute for the Study of Learning and Expertise
2164 Staunton Court
Palo Alto, CA 94306
shbay@apres.stanford.edu

2NASA Ames Research Center
Computational Sciences Division
MS 269-3, Moffet Field, CA 94035

Mark.A.Schwabacher@nasa.gov

Abstract

Many automated systems for detecting threats are
based on matching a new database record to known
attack types. However, this approach can only spot
known threats and thus researchers have also be-
gun to use unsupervised approaches based on de-
tecting outliers or anomalous examples. A popular
method of finding these outliers is to use the dis-
tance to an example’s k nearest neighbors as a mea-
sure of unusualness. However, existing algorithms
for finding distance-based outliers have poor scaling
properties, making it difficult to apply them to large
datasets typically available in security domains. In
this paper, we propose modifications to a simple, but
quadratic, algorithm for finding distance-based out-
liers, and show that it achieves near linear time scal-
ing allowing it to be applied to real data sets with
millions of examples and many features.

Keywords: outlier detection, anomaly detection,
nearest neighbors, aviation security

1 Introduction

Detecting threats by analyzing the examples in a
database is an important problem in security do-
mains. For example, researchers in data mining are
developing algorithms to detect computer intrusions
from audit records [21, 10, 19]. The U.S. Federal
Aviation Administration developed the Computer
Assisted Passenger Pre-screening System (CAPPS)
[8, 11, 25], which screens airline passengers on the

basis of their flight records and flags individuals for
additional checked baggage screening.

One approach to addressing this task is developing
sophisticated models of a threat and how they man-
ifest themselves in a data set record. For example,
although the exact details of CAPPS are not pub-
lished, it is thought to assign higher threat scores to
cash payments [25]. However, explicit threat models
can only capture known attack types. Another ap-
proach is based on outlier or anomaly detection where
one looks for unusual examples that appear suspicious
and may require additional screening [20, 10, 22].

Outlier detection has a long history in statistics
[3, 14], but has largely focussed on univariate data
with a known distribution. These two limitations
have restricted the ability to apply these types of
methods to large real-world databases which typi-
cally have many different fields and have no easy way
of characterizing the multivariate distribution of ex-
amples. Other researchers, beginning with the work
by Knorr and Ng [17], have taken a non-parametric
approach and proposed using an example’s distance
to its nearest neighbors as a measure of unusualness
[2, 23, 18, 10]. Eskin et al. [10], and Lane and Brod-
ley [20] applied distance-based outliers to detecting
computer intrusions from audit data.

Although distance is an effective non-parametric
approach to detecting outliers, the drawback is the
amount of computation time required. Straightfor-
ward algorithms, such as those based on nested loops,
typically require O(NN?) distance computations. This
quadratic scaling means that it will be very difficult

to mine outliers as we tackle increasingly larger data
sets. This is a major problem for security screening
databases where there are often millions of records.
For example, U.S. airlines carry over 600 million pas-
sengers per year|[8].

Recently, researchers have presented many differ-
ent algorithms for efficiently finding distance-based
outliers. These approaches vary from spatial index-
ing trees to partitioning of the feature space with clus-
tering algorithms [23]. The main goal is developing
algorithms that scale to large real data sets.

In this paper, we show that one can modify a sim-
ple algorithm based on nested loops, which would
normally have quadratic scaling behavior, to yield
near linear time mining on real, large, and high-
dimensional data sets. Our goal is to develop al-
gorithms for mining distance-based outliers that can
feasibly be applied to help detect threats in large se-
curity data sets. Specifically, our contributions are:

o We show that an algorithm based on nested loops
in conjunction with randomization and a simple
pruning rule has near linear time performance
on many large real data sets. Previous work
reported quadratic performance for algorithms
based on nested loops [17, 18, 23].

e We demonstrate that our algorithm scales to real
data sets with millions of examples and many
features, both continuous and discrete. To our
knowledge we have run our algorithm on the
largest reported data sets to date and obtained
among the best scaling results for real data sets.
Other work has reported algorithms with linear
time mining but only for low-dimensional prob-
lems (less than 5) [17, 18] or have only tested the
scaling properties on simple synthetic domains.

e We analyze why our algorithm performs so well.
Under certain conditions, the results suggest
that the time to process non-outliers, which are
the large majority of points, does not depend on
the size of the data set.

e We apply our algorithm to an airline passenger
database and we discuss some limitations of our
approach on this database.

The remainder of this paper is organized as fol-
lows. In the next section, we review the notion of
distance-based outliers and present a simple nested
loop algorithm that will be the focus of this paper.
In Section 3, we show that although our simple al-
gorithm has poor worst case scaling properties, for
many large, high-dimensional, real data sets the ac-
tual performance is extremely good and is close to

linear. In Section 4, we analyze our algorithm and
attempt to explain the performance with an average
case analysis. In Section 5, we present examples of
discovered outliers to give the readers a qualitative
feel for how the algorithm works on real data. Finally,
we conclude this paper by discussing limitations and
directions for future work.

2 Distance-Based Outliers

A popular method of identifying outliers is by exam-
ining the distance to an example’s nearest neighbors
[23, 18, 17, 2]. In this approach, one looks at the lo-
cal neighborhood of points for an example typically
defined by the k nearest examples (also known as
neighbors). If the neighboring points are relatively
close, then the example is considered normal; if the
neighboring points are far away, then the example
is considered unusual. The advantages of distance-
based outliers are that no explicit distribution needs
to be defined to determine unusualness, and that it
can be applied to any feature space for which we can
define a distance measure.

Given a distance measure on a feature space, there
are many different definitions of distance-based out-
liers. Three popular definitions are

1. Outliers are the examples for which there are less
than p other examples within distance d [17, 18].

2. Outliers are the top n examples whose distance
to the kth nearest neighbor is greatest [23].

3. Outliers are the top n examples whose average
distance to the k nearest neighbors is greatest
[2, 10].

There are several minor differences between these
definitions. The first definition does not provide a
ranking and requires specifying a distance parameter
d. Ramaswamy et al. [23] argue that this parameter
could be difficult to determine and may involve trial
and error to guess an appropriate value. The sec-
ond definition only considers the distance to the kth
neighbor and ignores information about closer points.
Finally, the last definition accounts for the distance
to each neighbor but is slower to calculate than def-
inition 1 or 2. However, all of these definitions are
based on a nearest neighbor density estimate [12] to
determine the points in low probability regions which
are considered outliers.

Researchers have tried a variety of approaches to
find these outliers efficiently. The simplest are those
using nested loops [17, 18, 23]. In the basic version
one compares each example with every other exam-
ple to determine its k nearest neighbors. Given the

neighbors for each example in the data set, simply
select the top n candidates according to the outlier
definition. This approach has quadratic complexity
as we must make all pairwise distance computations
between examples.

Another method for finding outliers is to use a spa-
tial indexing structure such as a KD-tree [4], R-tree
[13], or X-tree [5] to find the nearest neighbors of each
candidate point [17, 18, 23]. One queries the index
structure for the closest k points to each example, and
as before one simply selects the top candidates ac-
cording to the outlier definition. For low-dimensional
data sets this approach can work extremely well and
potentially scales as N log N if the index tree can
find an example’s nearest neighbors in log N time.
However, index structures break down as the dimen-
sionality increases. For example, Breunig et al. [7]
used a variant of the X-tree to do nearest neighbor
search and found that the index only worked well for
low-dimensions, less than 5, and performance dra-
matically worsened for just 10 or 20 dimensions. In
fact, for high-dimensional data they recommended se-
quential scanning over the index tree.

A few researchers have proposed partitioning the
space into regions and thus allowing faster determi-
nation of the nearest neighbors. For each region,
one stores summary statistics such as the minimum
bounding rectangle. During nearest neighbor search,
one compares the example to the bounding rectangle
to determine if it is possible for a nearest neighbor to
come from that region. If it is not possible, all points
in the region are eliminated as possible neighbors.
Knorr and Ng [17] partition the space into cells that
are hyper-rectangles. This yields a complexity linear
in N but exponential in the number of dimensions.
They found that this cell based approach outper-
formed the nested loop algorithm, which is quadratic
in N, only for four or fewer dimensions. Others use
a linear time clustering algorithm to partition the
data set [23, 10]. With this approach, Ramaswamy
et al. demonstrated much better performance com-
pared with the nested loop and indexing approaches
on a low-dimensional synthetic data set. However,
their experiments did not test how it would scale on
larger and higher-dimensional data.

Finally, a few researchers have advocated projec-
tions to find outliers. Aggrawal and Yu [1] suggest
that because of the curse of dimensionality one should
focus on finding outliers in low-dimensional projec-
tions. Angiulli and Pizzuti [2] project the data in
the full feature space multiple times onto the interval
[0,1] with Hilbert space filling curves. Each succes-
sive projection improves the estimate of an example’s
outlier score in the full-dimensional space. Their ini-

tial scaling results are promising, and appear to be
close to linear, however they have reported results on
only two synthetic domains.

In this paper, we show that the simplest type of
algorithm based on nested loops in conjunction with
randomization and a pruning rule gives state-of-the-
art performance. Table 1 shows our variation of the
nested loop algorithm in more detail. The function
distance computes the distance between any two ex-
amples using, for example, Euclidean distance for
continuous features and Hamming distance for dis-
crete features. The score function can be any mono-
tonically decreasing function of the nearest neigh-
bor distances such as the distance to the kth nearest
neighbor, or the average distance to the k£ neighbors.

The main idea in our nested loop algorithm is that
for each example in D we keep track of the closest
neighbors found so far. When an example’s closest
neighbors achieve a score lower than the cutoff we
remove the example because it can no longer be an
outlier. As we process more examples, the algorithm
finds more extreme outliers and the cutoff increases
along with pruning efficiency.

Note that we assume that the examples in the data
set are in random order. The examples can be put
into random order in linear time and constant main
memory with a disk-based randomization algorithm.
One repeatedly shuffles the data set into random piles
and then concatenates them in random order.

In the worst case, the performance of the algo-
rithm is very poor. Because of the nested loops,
it could require O(N?) distance computations and
O(N/blocksize x N) data accesses.

3 Experiments on Scaling Per-
formance

In this section, we examine the empirical performance
of the simple algorithm on several large real data sets.
The primary question we are interested in answering
is “How does the running time scale with the number
of data points for large data sets?” In addition, we
are also interested in understanding how the running
time scales with k, the number of nearest neighbors.

To test our algorithm we selected the five real and
one synthetic data set summarized in Table 2. These
data sets span a range of problems and have very
different types of features. We describe each in more
detail.

e (Corel Histogram. Each example in this data set
encodes the color histogram of an image in a col-
lection of photographs. The histogram has 32

Table 1: A simple algorithm for finding distance-based outliers. Lowercase variables represent scalar values
and uppercase variables represents sets.

Procedure: Find Outliers
Input: k, the number of nearest neighbors; n, the number of outliers to return; D, a set of examples
in random order.

Output: O, a set of outliers.
Let maxdist(z, V) return the maximum distance between x and an example in Y.
Let Closest(z, Y, k) return the k closest examples in Y to x.

begin

1. c+—20 // set the cutoff for pruning to 0
2. O—10 // initialize to the empty set

3. while B « get-next-block(D) {

4. Neighbors(b) < 0 for all b in B

5. for each d in D {

6. for each bin B, b#d {

7.

8.

// load a block of examples from D

if |Neighbors(b)| < k or distance(b,d) < maxdist(Neighbors(b),b) {
Neighbors(b) < Closest(b,Neighbors(b) U d, k)

9. if score(Neighbors(b),b) < ¢ {
10. remove b from B

11. Frid

12. O «— Top(B U O,n)

13. ¢ <« min(score(o)) for all o in O
4.}

15. return O

end

// keep only the top n outliers
// the cutoff is the score of the weakest outlier

bins corresponding to eight levels of hue and four
levels of saturation.

Airline Passenger. We obtained 90 days’ worth
of passenger data from a major U.S. airline. This
database includes the information that each pas-
senger provided to the airline (or to a travel
agent) when buying an airline ticket. The pas-
senger data is best seen as a relational database.
For example, each record can contain multiple
passengers traveling together, and each group
of passengers can have multiple flight segments.
For the experiments described in this paper, we
flattened one day’s worth of data to create a ta-
ble in which each row represents one passenger
flight segment. We selected 15 fields from this
flattened table which we believe could be useful
for passenger screening. We intend to scale up to
90 days’ worth of data and to develop anomaly
detection algorithms that operate directly on re-
lational databases without first flattening them
(see Section 6).

KDDCUP 1999. The KDDCUP data contains
a set of records that represent connections to
a military computer network where there have
been multiple intrusions by unauthorized users.

The raw binary TCP data from the network has
been processed into features such as the connec-
tion duration, protocol type, number of failed
logins, and so forth.

Census. This data set contains the responses
from the 1990 decennial Census in the United
States. The data has information on both house-
holds and individuals. We divided the responses
into two tables, one that stores household records
and another that stores person records, and
treated each table as its own data set. Both the
Household and Person data sets have a variety
of geographic, economic, and demographic vari-
ables. Our data comes from the 5% State public
use microdata samples and we used the short
variable list [24]. In total, the 5% State sample
contains about 5.5 million household and 12.5
million person records. For our experiments we
used a maximum of 5 million records for each
data set.

Normal 30D. This is a synthetic data set gener-
ated from a 30-dimensional normal distribution
centered on the origin with a covariance matrix
equal to the identity matrix.

We obtained the data sets Corel Histogram and KD-
DCup 1999 from the UCI KDD Archive [15] and the
census data from the IPUMS repository [24].

Table 2: Description of Data Sets

Data Set Features Cont. FExamples
Corel Histogram 32 32 68,040
Airline Passenger 15 3 439,381
KDDCup 1999 42 34 4,898,430
Household 1990 23 9 5,000,000
Person 1990 55 20 5,000,000
Normal 30D 30 30 1,000,000

We preprocessed the data by normalizing all con-
tinuous variables to the range [0,1] and converting
all categorical variables to an integer representation.
We then randomized the order of examples in the
data sets. Randomizing a file can be done in O(N)
time and constant main memory with a disk-based
shuffling algorithm as follows: Sequentially process
each example in the data set by randomly placing it
into one of n different piles. Recombine the piles in
random order and repeat this process a fixed number
of times.

We ran our experiments on a lightly loaded Pen-
tium 4 computer with a 1.5 GHz processor and 1GB
RAM running Linux. We report the wall clock time,
the time a user would have to wait for the output, in
order to measure both CPU and I/O time. The re-
ported times do not include the time needed for the
initial randomization of the data set and represent
one trial. Preliminary experiments indicated that al-
ternate randomizations did not have a major effect
on the running time. To measure scaling, we gener-
ated smaller data sets by taking the first n samples
of the randomized set. Unless otherwise noted, we
ran experiments to return the top 30 anomalies with
k = 5, a block size (|B|) of 1000 examples, and we
used the average distance to the nearest k£ neighbors
as the score function.

Our implementation of the algorithm was written
in C++4 and compiled with gcc version 2.96 with the
-0O3 optimization flag. We accessed examples in the
data set sequentially using standard iostream func-
tions and we did not write any special routines to
perform caching. The total memory footprint of the
executing program was typically less than 3 MB.

Figure 1 shows the total time taken to mine outliers
on the six data sets as the number of examples varied.
Note that both the x and y axes are in a logarithmic
scale. Each graph shows three lines. The bottom
line represents the theoretical time necessary to mine
the data set given a linear algorithm based on the
running time for N = 1000. The middle line shows

the actual running times of our system. Finally, the
top line shows the theoretical time needed assuming
a quadratic algorithm based on scaling the running
time for N = 1000.

These results show that our simple algorithm gives
extremely good scaling performance that is near lin-
ear time. The scaling properties hold for data sets
with both continuous and discrete features and the
properties hold over several orders of magnitude of
increasing data set size. The plotted points typi-
cally follow a straight line on the log-log graph which
means that the relationship between the y and «
axis variables is of the form y = az® or logy =
log a+blog x, where a and b are constants. Thus, the
algorithm scales with a polynomial complexity with
an exponent equal to the slope of the line. Table 3
presents for each data set the slope of a regression line
fit to the points in Figure 1. The algorithm obtained
a polynomial scaling complexity with exponent vary-
ing from 1.13 to 1.32.

Table 3: Slope b of the regression fit relating logt =
loga +blog N (or t = aN®) where t is the total time
(CPU + I/0O), N is the number of data points, and
a is constant factor.

Data Set slope
Corel Histogram 1.13
Airline Passenger 1.20
KDDCup 1999 1.13
Household 1990 1.32
Person 1990 1.16
Normal 30D 1.15

One exception to the straight line behavior is the
last point plotted for the Airline Passenger data set.
Up to 100,000 examples the running time follows a
straight line very closely with b = 1.08, however, the
last point at NV = 439,000 represents a large increase
in time. We believe this is caused by the way we
flattened the original relational database. For ex-
ample, if there are two tables X and Y, with each
example in X pointing to several different objects in
Y, our flattened database will have examples with
form (Xl,Yl), (Xl,YQ)7 (Xl,Y;g), (X27Y4), ... and
so forth. As it is likely that the closest neighbors of
(X1,Y7) will be the examples (X7,Y2) and (X1,Y3)
our algorithm may have to scan the entire data set un-
til it finds them to obtain a low score. For small ran-
dom subsets, it is unlikely that the related examples
would be present and so this does not affect scaling
performance. Flattening destroys the independence
between examples which we will see in Section 4 is
necessary for good performance.!

IWe are also considering alternative problem formulations

Corel Histogram

Airline Passenger

Household

Total Time
Total Time

Total Time

10 10" 10 10 10
Size

Person

Size Size

KDDCup 1999

10 10 10 10 10° 10 10

Normal 30D

1] [} Q
E B £ £
= =
e] = T
_— ° °
= 7 = [~
2 —
10 e
0, 2| -1
10 - 10 L L L 10
10° 10* 10° 10° 10 10° 10 10° 10° 10 10° 10" 10° 10

Size Size

Figure 1: Total time (CPU and I/O) taken to mine outliers as IV, the number of points, increases. The top
and bottom lines represent the theoretical time taken by a quadratic and linear algorithm based on scaling

the observed time at N = 1000.

We also examined how the total running time scales
with %k, the number of neighbors and the results for
Normal 30D and Person (N = 1,000, 000) are shown
in Figure 2. The bottom line represents the observed
time; the curved top line represents the time as-
suming linear scaling based on the timing results for
k = 5. In these graphs, the y axis is logarithmic and
the x axis is linear which means that a straight line in-
dicates that the relationship between the y and z axis
variables is of the form y = ae®® or logy = loga + bz
where a and b are constants. This relationship sug-
gests that the running time scales exponentially with
k. However, the empirical value of b as determined
by a regression fit is very small. For Normal 30D
b = 0.0163 and for Person b = 0.0135. Practically,
the observed scaling performance is much better than
linear for k£ < 100 , mainly because of the large fixed
computation costs unrelated to k.

4 Analysis of Scaling Time

In this section, we explain with an average case anal-
ysis why randomization in conjunction with pruning
performs well, especially when much of the past lit-
erature reported that nested loop designs were ex-
tremely slow because of the O(N?) distance compu-

that preserve independence of examples.

tations. In particular, both Knorr and Ng [17] and
Ramaswamy et al. [23] implemented versions of the
nested loop algorithm and reported quadratic perfor-
mance.

Consider the number of distance computations
needed to process an example x. For now we assume
that we are using outlier definition 2, rather than def-
inition 3 which we used in our experiment, for ease of
analysis. With this definition an outlier is determined
by the distance to its kth nearest neighbor. In order
to process x we compare it with examples in the data
set until we have either (1) found k neighbors within
the cutoff distance d, in which case we eliminate it
as it cannot be an outlier, or (2) we have compared
it with all N examples in the data set and failed to
find k neighbors within distance d, in which case it is
classified as an outlier.

We can think of this problem as a set of indepen-
dent Bernoulli trials where we keep drawing instances
until we have found k successes (k examples within
distance d) or we have exhausted the data set. Let
7(x) be the probability that a randomly drawn exam-
ple lies within distance d of point z, let Y be a ran-
dom variable representing the number of trials until
we have k successes, and let P(Y = y) be the prob-
ability of obtaining the kth success on trial y. The
probability P(Y = y) follows a negative binomial dis-

s Normal 30D s Person
10 T T 10
—=— observed —=— observed
— linear — linear
) ,///) ///
1S e S //
(SIS (SRS
S0’} ¢ Cao't / |
) k<]
= [
/
103 L L L L 103 L L L L
0 20 40 60 80 100 0 20 40 60 80

100

Figure 2: Total time (CPU and I/0) taken to mine outliers as k increases. The top curved line represents
the theoretical time taken by an algorithm linear in k based on scaling the observed time for k = 5.

tribution:

—1

= ()t a-re)
kE—1

The number of expected samples we need to draw to

process one example x is:

EY]=Y PY=yy+|[1-D PY =y |N
y=k y=k

(2)
The first term is the expectation of concluding a neg-
ative binomial series within N trials. That is, as we
are processing an example, we keep drawing more ex-
amples until we have seen k that are within distance
d, at which point we eliminate it because it cannot be
an outlier. The second term is the expected cost of
failing to conclude the negative binomial series within
N trials, in which case we have examined all N data
points because the example is an outlier (less than k
successes in N trials).
The expectation of a negative binomial series with
an infinite number of trials is,

S (YY) m (1 —)ty =
> (42 mbota - mbay =

y=k

3)

This is greater than the first term in Equation 2.
Combining Equations 2 and 3 yields,

ElY] <

N
k
—+ [1- PY = N 4
o S PY=y|N @
y=k
Surprisingly, the first term which represents the
number of distance computations to eliminate non-
outliers does not depend on N. The second term,

which represents the expected cost of outliers (i.e,
we must compare with everything in the database
and then conclude that nothing is close) does depend
on N, yielding an overall quadratic dependency to
process N examples in total. However, note that
we typically set the program parameters to return
a small and possibly fixed number of outliers. Thus
the first term dominates and we obtain near linear
performance.

One assumption of this analysis is that the cut-
off distance is fixed. In practice, the cutoff distance
changes with different values of N. However, we
should expect that if the cutoff distance increases
with larger N, then scaling will be better as m(x)
is larger and any randomly selected example is more
likely to be a success (neighbor). Conversely, if the
cutoff distance decreases, the scaling will be worse. In
Figure 3 we plotted the relationship between b, the
empirical scaling factor, and csox /5K, the ratio of
the final cutoffs for N = 50000 and N = 5000 for the
six data sets used in the previous section. We also
plotted results for two additional data sets, Uniform
3D and Mixed 3D, which we believed would be re-
spectively extremely difficult and easy. Uniform 3D
is a three-dimensional data set generated from a uni-
form distribution between [-0.5,0.5] on each dimen-
sion. Mixed 3D is a mixture of the uniform data set
(99%) combined with a Gaussian (1%) centered on
the origin with covariance matrix equal to the iden-
tity matrix.

The results indicate that for many data sets the
cutoff ratio is near or greater than 1. The only
data set with an extremely low cutoff ratio was Uni-
form3D. The graph also indicates that higher values

of the cutoff ratio are associated with better scal-
ing scores (lower b). This supports our theory that
the primary factor determining the scaling is how the
cutoff changes as N increases.

18

“ Uniform 3D

1.7¢ 1

1.6f 1

Household

1.3 : :

Person

Airline Passenger o i
KDDCUP

8

Corel Histogram o o
11f / S

Normal 30D

1
0.2 0.4 0.6 0.8 1 1.2

CSOKICSK

Mixed 3D

Figure 3: Empirical scaling factor b versus csox /csx,
the ratio of cutoff scores for N = 50,000 and N =
5, 000.

Figure 4 shows the running time plot for Uniform
3D and Mixed 3D. We expected Uniform 3D to have
extremely bad scaling performance because it has no
true outliers as the probability density is constant
across the entire space. Increasing N simply increases
the density of points and drops the cutoff score but
does not reveal rare outliers. In contrast, the results
for Mixed3D were extremely good (b = 1.11). In
this data set, as we increase N we find more extreme
outliers from the Gaussian distribution and the cutoff
distance increases, thus improving pruning efficiency.
Finally, we note that data sets with a true uniform
distribution are probably rare in real domains.

5 OQOutliers in Census Data

We have applied our algorithm to mining outliers in
the Airline Passenger database. However, for secu-
rity reasons, we cannot describe the data set nor the
discovered outliers in detail. Instead, we present re-
sults from the Household and Person data sets to give
the readers a qualitative feel for outliers that can be
mined from large data sets. We report selected re-
sults from running our outlier detection algorithm to
return the top 30 outliers with k& = 5. The full list
of top 30 outliers for both household and person are
available online? and we encourage readers to view
this list directly.

2http://www.isle.org/~sbay/papers/siam03/

The top outlier in the household database is a sin-
gle family living in San Diego with 5 married couples,
5 mothers, and 6 fathers. In the census data, a fam-
ily is defined as a group of persons related by blood,
adoption, or marriage. To be considered a mother or
father, the person’s child or children must be present
in the household. The house had a reported value
of $85K and was mortgaged. The total reported in-
come of the household was approximately $86K for
the previous year.

Another outlier is a single-family rural farm house-
hold in Florence, South Carolina. The house is owned
free and clear by a married couple with no children.
This example is unusual because the value of the
house is greater than $400K (not including the land),
and they reported a household income of over $550K.

In the person data set one of the most extreme
outliers was a 90+ year old Black Male with Italian
ancestry who does not speak English, was enrolled
in school®, has a Doctorate degree, is employed as
a baker, reported $110K income of which $40K was
from wages, $20K from business, $10K from farm,
$15K from welfare, and $20K from investments, has
a disability which limits but does not prevent work,
was a veteran of the U.S. armed forces, takes public
transportation (ferry boat) to work, and immigrated
to the U.S. 11-15 years ago but moved into his current
dwelling 21-30 years ago. Clearly, there are inconsis-
tencies in this record and we believe that this record
represents an improperly completed form.

A second outlier was a 46 year old, White, widowed
female living with 9 family members, two of which
are her own children. She has a disability that lim-
its but does not prevent her work as a bookkeeper or
accounting clerk in the theater and motion picture in-
dustry. She takes public transportation to work (bus
or trolley) and it takes her longer than 99 minutes to
go from home to work.

A third outlier was a 19 year old, White, female
with Asian ancestry and Mexican Hispanic origin
with a disability that limits but does not prevent
work. She earned $123K in business income, and
$38K in retirement income (which may include pay-
ments for disabilities), and is also enrolled in school.

Finally, we ask readers to keep in mind that these
outliers were discovered using a base set of features
which were not collected for a specific task (e.g., se-
curity screening). In our own work on the airline
passenger database, we are spending much effort on
feature engineering to get the most relevant informa-
tion for our algorithm.

3Taking a course that a high school or college would accept
for credit would count under Census definitions.

Uniform 3D

Mixed 3D

Total Time

Total Time

Size

10
Size

Figure 4: Total time (CPU and I/O) taken to mine outliers on data sets. For Uniform 3D b = 1.76, and for

Mixed 3D b = 1.11.

6 Limitations and Future Work

In this paper, we addressed one roadblock toward
applying distance-based outlier detection algorithms
to security screening: dealing with the computation
time required for large data sets. However, we feel
that there are several limitations in applying outlier
detection to security databases and that further re-
search needs to be conducted to address these.

The largest and most pressing limitation is that
our work has only addressed finding outliers in the
data sets that can be represented with a vector space
or equivalently a single table in a database. Clearly,
almost all real data sources will be in the form of
relational databases with multiple tables that relate
different types of information about each other.

To address relational data, the simplest solution is
to flatten the database with join operators to form
a single table. While this is a convenient solution it
loses much of the information available. For instance,
a flattened database cannot easily represent passen-
gers that have a variable number of flight trips. We
also found that flattening a database could create de-
pendencies between examples and this can reduce the
effectiveness of randomization and pruning.

We are currently investigating how we can ex-
tend our algorithm to handle relational data natively.
There are two research questions that arise. First,
how does one define a distance metric to compare
objects which may have a variable number of linked
objects? There has been some work on defining met-
rics to work on relational data [6, 9, 16]. The central
idea is to apply a recursive distance measure. That
is, to compare two objects one starts by comparing
their features directly, and then moves on to com-

pare linked objects and so on. Second, how does one
efficiently retrieve an object and its related objects
to compare them in the context of searching for out-
liers? Retrieving related objects may involve extract-
ing records in a non-sequential ordering and this can
greatly slow database access.

A second area we did not address in this paper is
determining how to set algorithm parameters such as
k, the distance measure, and the score function. Each
of these parameters can have a large effect on the dis-
covered outliers. In supervised classification tasks one
can set these parameters to maximize predictive per-
formance by using a hold out set or cross-validation to
estimate out-of-sample performance. However, out-
lier detection is unsupervised and no such training
signal exists.

Finally, our approach combines randomization and
pruning to speed the computation of the top out-
liers in the data set. Our method gives exactly the
same results as computing all N? pairwise distances
between examples and from these distances selecting
the most extreme outliers. Alternatively, one could
use a small random subset of examples to determine
the outliers in the entire data set. This would require
O(NNj) distance computations where N is the size
of the subset. This subset approach is not guaran-
teed to return the same outliers as performing all N2
pairwise comparisons but it may perform adequately.
Our initial experiments indicate that the correspon-
dence with the full N2 comparison strongly depends
on the data set. For example, on Mixed3D a subset
of 1000 examples was sufficient to give 90% corre-
spondence whereas on the Person data set a subset
of 1000 points gave less than 30% correspondence and
1,000,000 examples resulted only in 70% correspon-

dence. We plan to investigate this issue further.

7 Conclusions

In our work applying outlier detection algorithms to
large, real databases a major limitation has been scal-
ing the algorithms to handle the volume of data. In
this paper, we presented an algorithm based on ran-
domization and pruning which finds outliers on many
real data sets in near linear time. This efficient scal-
ing allowed us to mine data sets with millions of ex-
amples and many features.

Acknowledgments

We thank Thomas Hinke and David Roland of NASA
Ames for their help with the airline passenger data
and for reviewing a draft of this paper. This work
was supported by the CICT Program at NASA Ames
Research Center under grant NCC 2-5496.

References

[1] C. C. Aggarwal and P. S. Yu. Outlier detection for
high dimensional data. In Proc. of the ACM SIG-
MOD Int. Conf. on Management of Data, 2001.

[2] F. Angiulli and C. Pizzuti. Fast outlier detection
in high dimensional spaces. In Proc. of the Sizth
FEuropean Conf. on the Principles of Data Mining
and Knowledge Discovery, pages 15-26, 2002.

[3] V. Barnett and T. Lewis. Outliers in Statistical Data.
John Wiley & Sons, 1994.

[4] J. L. Bentley. Multidimensional binary search trees
used for associative searching. Communications of
the ACM, 18(9):509-517, 1975.

[5] S. Berchtold, D. Keim, and H-P Kreigel. The X-
tree: an index structure for high-dimensional data.
In Proc. of the 22nd Int. Conf. on Very Large
Databases, pages 28-39, 1996.

[6] G. Bisson. Learning in FOL with a similarity mea-
sure. In Proc. of the Tenth National Conf. on Arti-
ficial Intelligence, pages 82—87, 1992.

[7] M. M. Breunig, H.P. Kriegel, R. T. Ng, and
J. Sander. LOF': Identifying density-based local out-
liers. In Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, 2000.

[8] Commission on Engineering and Technical Systems.
Assessment of Technologies Deployed to Improve
Aviation Security: First Report. Number NMAB-
482-5. National Academy Press, 1999.

[9] W. Emde and D. Wettschereck. Relational instance-
based learning. In Proc. of the thirteenth Int. Conf.
on Machine Learning, 1996.

E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and
S. Stolfo. A geometric framework for unsupervised

(10]

(1]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

[20]

(21]

22]

23]

24]

(25]

anomaly detection: Detecting intrusions in unlabeled
data. In Data Mining for Security Applications, 2002.
Federal Aviation Administration. Security of checked
baggage on flights within the united states — pro-
posed rule. Federal Register, 64(74):19219-19240,
April 19, 1999.

E. Fix and J. L. Hodges. Discriminatory analysis:
Nonparametric discrimination: Small sample per-
formance. Technical Report Project 21-49-004, Re-
port Number 11, USAF School of Aviation Medicine,
Randolf Field, Texas, 1952.

R. Guttmann. A dynamic index structure for spatial
searching. In Proc. of the 1984 ACM SIGMOD Int.
Conf. on Management of Data, pages 47-57, 1984.
D. Hawkins. Identification of outliers. Chapman and
Hall, 1980.

S. Hettich and S. D. Bay. The UCI KDD archive.
[http://kdd.ics.uci.edu/]. Irvine, CA: University of
California, Department of Information and Com-
puter Science, 1999.

T. Horvath, S. Wrobel, and U. Bohnebeck. Rela-
tional instance-based learning with lists and terms.
Machine Learning, 43:53-80, 2001.

E. M. Knorr and R. T. Ng. Finding intensional
knowledge of distance-based outliers. In Proc. of the
25th VLDB Conf., 1999.

E. M. Knorr, R. T. Ng, and V. Tucakov. Distance-
based outliers: algorithms and applications. VLDB
Journal: Very Large Databases, 8(3-4):237-253,
2000.

T. Lane and C. Brodley. An application of machine
learning to anomaly detection. In Twentieth Annual
National Information Systems Security Conf., vol-
ume 1, pages 366-380, 1997.

T. Lane and C. E. Brodley. Temporal sequence learn-
ing and data reduction for anomaly detection. ACM
Transactions on Information and System Security,
2(3):295-331, 1999.

W. Lee, S. Stolfo, and K. Mok. Adaptive intrusion
detection: a data mining approach. Artificial Intel-
ligence Review, 14(6):533-567, 2000.

L. Portnoy, E. Eskin, and S. Stolfo. Intrusion detec-
tion with unlabeled data using clustering. In Proc.
of ACM CSS Workshop on Data Mining Applied to
Security, 2001.

S. Ramaswamy, R. Rastogi, and K. Shim. Efficient
algorithms for mining outliers from large data sets.
In Proc. of the ACM SIGMOD Conf., 2000.

S. Ruggles and M. Sobek. Integrated
public use microdata series: Version 2.0.
[http://www.ipums.umn.edu/], 1997.

U.S. House of Representatives, Subcommit-
tee on Aviation. Hearing on aviation se-
curity with a focus on passenger profiling.

http://www.house.gov /transportation/aviation/
02-27-02/02-27-02memo.html, February 27, 2002.

The Link Discovery Problem and Characteristics of
Real-World Databases

Jafar Adibi
Information Sciences Institute
University of Southern California
4676 AdmiraltyWay, Marina del Rey, CA 90292
adibi @isi.edu

Abstract

An implicit assumption in some of the studies in
statistics, machine learning and data mining is that the
datais uniformly distributed or exhibits either Poisson
or binomial distribution. However, most of the
databases in real world applications violate these
assumptions and disobey such distribution. Link
Discovery (LD) as a new challenge in data mining is
not an exception in this regard. In this paper we
briefly describe the LD challenge problem and we
show that these datasets are also skewed and exhibit
Zipf law distribution. Since issues such as privacy and
security promote the use of simulated database in data
mining in general and specifically in LD, the need to
use of simulated data for performance evauation of
these techniques is inevitable. In this study we
provide some major characteristics of a rea world
database and argue that any simulated database has to
follow these characteristics to justify the performance
analysis and evaluation of LD techniques.

Keywords
Relational Data Mining, Link Discovery, Zipf Law

1. Introduction

During the past year, the development of information
technology that could aid organizations in their efforts to
detect and prevent fraudulent activities has become an
important topic for research and development. Scince the
amount of information, tips, reports and data increases
exponentially every day, analyzing such data manually to
find patterns and to identify suspicious activities is
impossible. Hence, new techniques to achieve these goals
and to overcome such obstacles are needed.

The Evidence Extraction and Link Discovery (EELD)
program of the Defense Advanced Research Projects
Agency (DARPA) is one of the research projects, which
attempt to address this issue. The main goal of the EELD
program is the development of techniques for mining large
amounts of data to find hidden patterns, extract valuable

Copyright © 2003, Society for Industrial and Applied Mathematics
(www.siam.org). All rights reserved.

knowledge and discover hidden links among sparse
evidences. Such technologies are capable to extract
relevant data and relationships about people, places,
events, organizations, objects and activities from different
sources such as in-house databases, message traffic and
open source data. Eventually, these techniques will link
items relating potential groups; learn patterns of different
scenarios, identify organizations, learn fraudulent behavior,
model groups’ activities and detect emerging threats.

The EELD program divided its focus into three related
sub-areas to achieve its goas. These areas are Evidence
Extraction (EE), Link Discovery (LD) and Pattern
Learning (PL). While the main focus of the EE areaisthe
task of obtaining structured evidence data from
unstructured sources, LD’s main goa is the task of
identifying complex, multi-relational patterns that indicate
potentially threatening activities in large amounts of
structured data. PL’s main concern is the automated
discovery of new relational patterns.

In this paper we report part of the issues related to an on
going project at USC information Sciences Institute called
KOJAKY. KOJAK is hybrid link discovery system
developed under the EELD program. It combines
knowledge representation and reasoning technology with
statistical clustering and analysis techniques from the area
of data mining.

Similar to other machine learning and data mining
techniques practically LD needs to evaluate the devel oped
algorithm on some databases. Whether one builds a new
algorithm, or wishes to use an existing one, it is important
to know how the algorithms perform. Since privacy and
security are important concerns in these domains the use of
synthetic data for evaluation, modification and tuning of
new technologies is inevitable. A true advantage of
synthetically generated datasets is that they are highly
tunable as to the level of noise or corruption present in the
evidence.

! http://www.isi .edu/~hans/eel d/

Table 1. Comparison between Relational M odels and M odels of Relational Data (RDM) (Adapted from [Senator, 2001])

Relational M odels

M odels of Relational Data

Data One type of entity with a set of attributes Non-homogeneous, multi-source, uncertain data
Data Type Homogeneous data Many types of entities, each with own set of attributes
Attributes Assume independence among entities Entities are interdependent

Representation | Nodes: variable

Links: statistical relationship between variables

Nodes: person, place, organization, event, account...
Links: relation between two objects (nodes)

Focus Probability that a given node in the data can | Likelihood that an instance of a specific graph-theoretic

analysis of these variables

be assigned a variable, given other variables, | structure in the data matches a pattern of interest,
based on probabilities derived from statistical

include temporal, spatial, organizational, and/or
transactional patterns.

This paper attempts to study the issue of evaluation
through synthetic data rather than real world databases in
LD applications. We study and analyze an example of a
real world databases (a.k.a. Russian Contract Killing) and
discuss the effect of such characteristics on design of
synthetic databases. Our main finding is that these datasets
are skewed and exhibit Zipf law distribution and do not
follow the conventional assumption of binomia and /or
Poisson distribution.

The rest of this paper is organized as follows.We start
with a brief description of the LD problem, which includes
a short review on Relational Data Mining along with its
differences to other areas of data mining. In Section 3 we
review characteristics of some other real world databases
aong with Zipf law distribution, its characteristics and
presence in the real world. In Section 4 we introduce a
real-world and a synthetic LD database, which have been
studied in this paper. In section 5 we report our finding on
studying of such databases followed by concluding
remarks.

2. Link Discovery

In this section we explain the problem of LD in more
detail. At first we provide a short review of the area of
Relational Data Mining. Next, we define the problem of
LD and its main differences to other areas of DM.

Relational Data Mining

Conventional Knowledge Discovery in Databases (KDD)
techniques assume that the data to be mined is in a single
relational table and that examples are flat tuples of attribute
values [Piatetsky-Shapiro, 1996][Fayyad, 1996]. The
attribute-value paradigm only alows the analysis of simple
objects. It requires that each object can be described by a
fixed set of attributes each of which can only have asingle
value. The mgjor focus of machine learning techniques,
KDD and statistics has been on classification, clustering
and regression using feature vectors as inputs. Properties of
typical data mining tasks and attention to scaling,
efficiency and the dimensionality curse are the reason why
mining large relational databases containing more than one
table has been given less attention in the past.

New areas of data mining such as entity mining and link
discovery concerns mining data from multiple relational
tables that are richly connected. To be able to represent
more complex and structured objects, one has to employ a
relational database containing multiple tables. Each object
can be described by multiple records in multiple tables. To
be able to analyze relational databases containing multiple
relations properly, specific agorithms will have to be
written that cope with the structural information that occurs
in relational databases. Mining this type of data is referred
to Relational Data Mining (RDM) [Dzeroski, 2001][Koller,
1998]. RDM aims to integrate results from existing fields
such as inductive logic programming, artificia
intelligence, data mining, machine learning and relational
databases| Mooney, 2002].

In RDM, different form other data mining techniques,
the knowledge to be discovered may be the definition of
another relation rather than a classification, clustering or
regression function. Mining databases that consist of
complex structured objects aso falls within the scope of
this field: the normalized representation of such objects in
arelational database requires multiple tables.

Present RDM approaches consider al of the main data
mining tasks, including association rules analysis,
classification, clustering, learning probabilistic models and
regression. The techniques used by single-table data
mining approaches for these tasks have been extended to
the multiple-table case including relational association
rules, relational classification, relational decision trees, and
probabilistic relational models, etc. RDM methods have
been successfully applied across many application areas,
such as analysis of business data, bioinformatics,
pharmacology and Web mining [Dzeroski, 2001]. Table 1
(adapted form [Senator, 2001]) illustrates the major
difference between Relational Models (conventional KDD)
and Relational Data Mining (RDM).

Link Discovery Functionality

LD is a crucia step in data mining to counter-fraudulent
activities and is concerned with the identification of
complex relational patterns that indicate potentially
threatening activities in large amounts of relational data
The main goal of LD isto identify related objects, entities,

Link Object Attribute ;
Surname John_Smith Smith
FirstName John_Smith John
HasGender John_Smith Male
Surname Michael_Green | Green Eillek _
FirstName Michael_Green | Michael Emplgyee
HasGender Michael_Green | Male Surnarne LA IR el
CITIZENSHIP John_Smith Russia _ VictimHasGender
Surname Joe_Brown Brown ne FlrstN
FirstName Joe_Brown Joe Purder_iWeagon
HasGender Joe_Brown Male -._Inhn —
Killer Action_3 John_Smith i1t HasGenfer
Killer Action_3 Michael_Green FjrstNam& Hasi0ccupdtion
Victim Action_4 John_Smith ?;‘lrn"me Hascdhde
Killer Action_4 Joe_Brown e, - JL=TualaT=44
Linked John_Smith Location_2 Has-0Occupation
Found_at_Scene | John_Smith Location_4 Lise Killer
Member John_Smith Org_34 _ HTIZEMEAIP ASssociatg
Employee Joe_Brown Org_1 IJ=ad
Killed_by Mary_Jones John_Smith Found/at_Sgene pitfer
A.ssociate John_Sm?th Michael_Green ALl
Killed_by John_Smith Joe_Brown BTy
Used John_Smith Weapon_2 _
Used Michael_Green | Weapon_2 - ‘ Urnarme
Murder_Weapon | John_Smith Weapon_1 FlrstNamg
Murder_Weapon | Joe_Brown Weapon_1
Used John_Smith Weapon_25 :
Has-Occupation John_Smith Criminal
Has-Occupation Michael_Green | Criminal
Has-Occupation Joe_Brown Criminal

Figure 1: A simple example of the Link Discovery problem adapted form the Russian Contract Killing (RCK) domain.
Left: relations among objects presented in a table. Right: illustration of such relationsto demonstrate the complexity of

the domain.

events, persons, organizations and plans which lead to .
identifying known, complex and multi-relational patterns
that indicate potentially threatening activities' . The data
and patterns include representations of people,
organizations, objects, actions and events and many types
of relations between them including the time tag, which
indicated the time of occurrence of an event. Given the
style of data needed for LD, it requires new methods in the
area of relational data mining.
Figure 1 shows a simple example of the link discovery
problem. The left side of figure shows the relations among
objects in the database. For simplicity, we illustrate all
relations in one table. The first column indicates the
relation, the second column is the object and the third .
column indicates the attribute of the relation. Right side of
Figure 1 is an illustration of such relations as links among
objects and attributes.
Some issues that make LD a rather chalenging task
include the following:

! http://www.darpa.mil /iao/EEL D.htm

Connectivity: many real world LD databases suffer
form connectivity curse. To be more specific,
almost all objects in the database including people,
organizations, locations etc. are connected directly
or indirectly. Hence, there is a high probability that
two objects are connected to each other through
these attributes. For instance in our example in
Figure 1 Joe-Brown and John-Smith are connected
among other things because both genders are male.
The male attribute might not be an important
relation, but if both Joe-Brown and John-Smith
share the same nationality that may raise a flag for
an analyst.

Negative Noise (Observablity): This factor
describes how much of the real data have been
observable to an analyst. Not all events, that occure
in the world state, will be known to LD
components. Many incidents may not be reported or
might not be observable. For instance, the
relationship of two people as friend or teammate

may not reported in data while it might be a very
important factor.

e Positive Noise: There are some evidences that are
the result of tasks that are very similar to a
suspicious behavior or show a strong connection
among parties but they are not. These patterns are
similar in certain ways to suspicious patterns and
they are not easy to differentiate from others.

e Corruption: Corruption are varies from typo and
misspelling in names and numbers, to assigning a
wrong value to a given attribute. An example would
be naming the wrong hitman as the murderer in a
contract killing case.

e Complexity: On one hand, the richer the
information available to a LD system, the more
interesting relationships between entities can be
discovered. On the other hand, many interesting
connections will not be findable unless
appropriately rich background knowledge is
available in whose context the relations extracted by
EE methods can be analyzed.

LD techniques aim to overcome these obstacles to
discover hidden knowledge in large databases. Examples
of the hidden knowledge are:

e Association between individual X and organization

Y;

e Link among facility F, owned by Y, and individual
X.

e Similarity between agent A’'s and agent B's
behaviors.

e Membership of agent A and agent B to the same
organization

e Strong connection between individua X and
individual Z.

Link Discovery and Other Areasof Data Mining

LD isdifferent from other areas of data mining based in
its view, techniques, focus and methodology. For instance,
LD techniques are not looking for similarities among
individuals as a classification task. There can be a strong
connection, relation or link between two individuals while
there are no similarities among them. While clustering and
classification techniques try to maximize the distance
among classes and minimize the distance within classes
LD’s main focusisto find strong, valuable and informative
links among individuals or classes.

Moreover, LD has a fundamental difference with outlier
detection. Outlier detection tries to solve the problem of
detecting rare events, deviant objects, and exceptions. In
addition, usually there is a need for a database including
normal cases, abnormal cases along with positive and
negative noise. However, in real-world LD applications
there is a strong need to analyze and detect a threat by
mining a series of events even with only a few or no
previous similar cases.

Another aspect of the LD problem is adaptation.
Individuals adapt themselves to the current monitoring
policy and data mining techniques frequently. An

50

45 1 _Real world databases

40
< - #IBM-Artificial
- |+ BMS-WebView-1
§ BMS-WebView-2
=] — BMS-POS
o
o
[T

0 5 10 15 20 25 30

Transaction size

Figure 2: Dataset transaction size distribution. Adapted
from [Zheng, 2001]

intelligent LD system has to be capable to handle thisissue
aswell.

3. Real World Database

Before describing the LD database in Section 4 we take a
quick look on some other real-word datasets and outline
new findings about the distribution of such data
Recognized groups of data typically are skewed and
exhibit fractal dimension. Many physical systems contain a
form of functional self-similarity that owes its richness to
recursion [Schroeder, 1991]. For instance, most biological
systems contain self-similar structures that are made
through recurrent processes [Mandelbrot, 1982]. Human
brains, ocean flows, changes in the yearly flood levels of
rivers, voltages across nerve membranes, musical melodies
and economic markets also create enormously complex
behavior that is much richer than the behavior of the
individual component units. New findings in different
branches of science and technology also show the presence
of self-similarity and fractal dimensions in different
domains [Mandelbrot, 1982][Mandelbrot, 1965]. To name
a few: medical diagnosis (physician treatment and patient
response), robot navigation (robot move and environment
response to robot sensors), Internet web logs and network
behavior monitoring (packet transmission, switch behavior
and network response), recent measurements of local-area
and wide-area traffic of traffic data from networks and
services such as ISDN traffic, Ethernet LAN’s, Common
Channel Signaling Network (CCNS) and Variable Bit Rate
(VBR) video are examples of such phenomenon. Many of
these data exhibits variability at a wide range of time
scales. [Willinger, 1997][Adibi, 2001][Burlaga,
1986] [Fal outsos, 2001] [Feder, 1988][Hsu, 1990]

These observations raise caution on designing synthetic
data. For evaluation of a data mining technique synthetic
data has to be quite similar to real world data, otherwise
the evaluation, performance measurement and the result
provided on synthetic data might be totally different when
such techniques are applied to real world databases. The

difference between real world data and simulated data has
been explored in related work outlined below.

Zijian Zheng et al, in [Zheng, 2001] have studied the
difference between synthetic data and real world database
in market basket analysis through association rules or
frequent itemset. In their work, they compared five well-
known association rule agorithms using three real-world
datasets and an artificial dataset from IBM Almaden. Not
so surprisingly, they have shown that the experimental
results confirmed the performance improvements
previously claimed by the authors on the artificial data, but
some of these gains do not carry over to the real datasets.
Fig 2. adapted from [Zheng, 2001] shows the difference
between a real world and an artificial data set provided by
IBM Almaden. Fig. 2 shows the frequency relevant to
transaction size (items bought by a given customer). As it
shows in the Fig. 2 there are many transaction sizes with
low frequency and a few transaction sizes with high
frequency. Such distribution fitsin Zipf law distribution.

Our own observation also shows that the distribution of
a real world database follows the Zipf law distribution. In
the following we first briefly review the Zipf law
distribution and its characteristics followed by description
of areal world LD database exhibiting it.

Zipf Law

Zipf's law usually refers to the size of an occurrence of an
event relative to its rank. The two Zipf laws are: the rank-
frequency and the frequency-count. Let f(r)be the
occurrence frequency of the r'" most frequent items in a
given set.[Hill, 1974][Adamic, 1974]

The rank-frequency plot is the plot of the occurrence
frequency f(r) versus the rank r, in log-og scales. The
rank-frequency version of Zipf's law states
that f(r)ec1/r. Thisistypicaly referred to asthe Zipf 's
law or the Zipf distribution. In log-log scales, the Zipf
distribution gives a straight line with dlope -1. The
generalized Zipf distribution (Zipf-like) is defined as
f(r) «c1/r? where the log-log plot can be linear with any
dope. The second law, also known as the discrete Pareto
distribution, involves the count-frequency plot: let c(f)be
the count of items that appear f times in the document. The
second Zipf's law states that c(f)=1/f ¢ .[Zhigiang,
2001]

The count-frequency plot actually corresponds to the
probability density function of the occurrence frequency of

1000 300
250
100 \ 200
\ 150
10 \ 100
\ 50/
1 \ ol

1 10 100 1000 0 50 100 150 200 250 300

Figure 3: lllustration of Zipf distribution

aniteminaset and it is a mathematical consequence of the
first law. Also, in log-log scales, the count-frequency plot
of a Zipf distribution will be a straight line, with slopeg .
Thisgraphisillustrated in Fig. 3.

Zipf’s law indicates that in such a distribution a few
elements score very high (the right tail in Fig. 3). Examples
of such fact are: [Faloutsos, 2001]

e Language: words that are used extremely often

e Library: booksthat everybody wantsto borrow

e Marketing: products that every one wants to buy

e Websites: websites or pages with lots of interest

e Olympic: counties with many number of medals
In addition it indicates that at the end a large number of
elements score very low (the left tail in Fig. 3). Examples
of such fact are:

e Language: wordsthat are almost never used

e Library: booksthat are almost never checked out

e Marketing: many unpopular products

e Website: sites or pages with almost no hits

e Olympic games: countries that never gets a medal
Other examples are: distribution of file sizes (Zipfs law),
income distribution (Pareto’s law), publication counts
(Lotka s law), length of articlesin a newspaper (Zipf), web
hit counts (Huberman) duration of UNIX jobs (Harchol-
Balter) and length of file transfers (Bestavros+). [Faloutsos,
2001]

4. Link Discovery Databases

Due to respecting people privacy, access to real world
databases has been a main concern in KDD community in
past. The LD community is not an exception in this matter.
In particular, since the LD goal is to relate people, place
and entities, it triggers concern with privacy issues. The
bal ance between privacy concerns and the need to explore
large volumes of data for LD is difficult problem. The
development of technology for KDD and LD has
revitalized concern about the following general privacy
issues: secondary use of personal information, handling
misinformation, and granulated access to personal
information. These issues motivate simulated data for
performance evaluation of LD techniques. In this section
we explain the characteristics of a rea-world and an
artificial dataset and we compare some of their
characteristics.

The Russian Contract Killing (RCK) Data

The dataset of contract killings was first compiled by
OHayon and Cook [Cook, 2000] through Veridian
Systems Division (VSD) [Williams, 2002]. This effort was
a response to research on Russian organized crime that
encountered frequent. Each of the contract-killing reports
provided an image of the criminal scene in Russia, but
there was no information of how these were linked, what
the trends were, who the victims were, the relationship
between victims themselves or the relationship between
victims and perpetrators.

Table 2: Russian Contract Killing Database Characteristics, Links and Statistics

Entities # Events Per sons Organizations | Locations | Materials | Weapons
Events 169 59 -- -- -- -- --
Per sons 615 531 1,071 -- -- -- --
Organizations 320 304 472 140 -- -- --
L ocations 206 n/a 90 33 2 -- --
Materials 7 6 7 2 4 0 --
Weapons 148 128 268 11 19 2 1
Sour ces 265 265 n/a n/a n/a n/a n/a
Occupations na na 532 na na na na

The database was captured as a series of incidents. Each
incident in the series received a description of the
information drawn from the sources, typicaly one news
article, but occasionally more than one.

Information in the series is based on open source
reporting, especially Foreign Broadcast Information
Service and Joint Publications Research Service. In
addition additional materials on the World Wide Web were
consulted. Most of the reported killings are from the 1990s.
The main focus is on Russia, but killings involving Russian
organized crime outside Russia are a so included.

In total 166 series incidents have been coded. Database
includes 1,630 entities including the source entities and
3,415 links not including additional 532 Person-
Occupation relations. The database has over 40 relational
tables. The number of tuples in a relational table varies
from 800 to as little as 2 or 3 elements. The data is
presented as a series of events in a relational database
format. This format contains objects described in rows in
tables, each of which has attributes of differing types. The
objects consist of the following:

e Entity Objects: Location, Material, Organization,

Person, Resource, and Weapon.

Event Objects: generic Event

Links: used for expressing links between/among
Entities and Events, and currently consisting of
those represented by gray color in Table 2.

Synthetic Version o RCK

Synthetic version of the Russian Contract Killing data was
generated by two different simulators. One is a Bayesian
Network (BN) Simulator [Team, 2002]and the second one
is a Task-Based (TB) Simulator [Team, 2002]. Our main
focusison TB simulator.

The Task-Based simulator [Team, 2002] provides a
flexible mechanism for creating synthetic datasets within
the EELD program. It includes a pattern specification
language, a knowledge base, case generation and
representation, evidence generation and corruption, and
answer key representations. All the core of the task-based
simulator are tasks. Each task contains one or more

methods, where each method has a probability of being
selected given that its preconditions are satisfied. The
simulator also provides powerful functionality for filtering
and corrupting data. This is particularly important to
represent situations where actual data is expected to have
low observability. As shown next, the data has been
presented in simulation output as binary predicates:

(isa U D342 report)
(event CccursAt Ul D342 1/2/2002)
(report Source U D342 Bank)
(reportContent Ul D342
(isa U D15622 Wt hdrawal))
(reportContent U D342
(transacti onAnount
Ul D15622 22000))
(report Content Ul D342
(event Cccur sAt Ul D15622
Jan_1, 2002_2:00: 00_AM)
(reportContent U D342
(transacti onAccount
U D15622 Ul D10420))

The simulation data include meta-data, such as when
and where a specific event was reported. The simulator has
the capability to generate different numbers of agents,
organization, crimes, group activities, etc. with different
signal to noiseratio.

For comparison with the real database we report our
result on two different synthetic datasets with different
characteristics. These datasets are described in Table 3.
Test 1 includes about 400 people in its data and Test 2 has
about 2000 people entities.

Table 3: Synthetic data selected for the experiments

File Name Noise Observability | Connectivity Size

Test 1 High Very low Medium Medium

Test 2 Medium Very low High Medium

5. Database Analysis

In the course of the analysis of these datasets we were able
to study some of the local properties of the LD graph. In
this section we survey these observations and point out that
traditional random graph models distribution (i.e Normal
Distribution) would do a poor job of explaining them. We
interpret the whole database as a graph similar to the graph
on right side of the Fig. 1. In this graph objects (i.e person,
location, action etc.) are connected to each other through
their attributes (i.e. male, John, Smith).

Notation

In the following we describe our notation for the rest of
this section along with assumptions and definitions. A
graph is characterized by the following:

e Nodes that represent entities such as person, place
etc.

e Links, connect two nodes to each other such as
Gender, which connects Person_124 to Male.

o E, the set of all edges or links (relations) existing

in the graph.

V, the set of all possible nodes in the graph

d(i) , the degree of a node i which is the number

of in-links and out-links connected to the node.

Degree Distribution

We begin with the degree of nodesin the LD graph. Fig.
4 is alog-log plot with the x-axis as the number of links
connected to each person and y-axis as number of persons
with such number of links. The plot suggests that the
probability that a person has degree d(i) is proportional to
1/(i)* where o is approximately 2. Such Zipf law
distributions cannot arise in models that exhibit either a
Poisson or a binomia distribution. There is much
information available for a few individuals and not very
much information for all the others in the database. The
total number of links was 6174 links. The average number
of links per person was 131.36 and the variance of such
distribution was 137.7. In this graph we have considered
the following attributes as links, which are connected to a
given person:;

“attacked_by”, “menmber”, “Kkilled_by”,

“owner” “found_at _scene”, “citizenship”,

“linked”, “used”,“inhabitant”, “associate”,

“enpl oyee”, and “nur der _weapon”.

Relation Distribution

In this experiment we count the frequency of “relation-
atribute” pairs (i.e. HASGENDER -> MALE) in the
database. Interestingly such distribution also shows an
exponential distribution. Fig. 5 is a distribution with the x-
axis as number of “relation-attribute” pairs and y-axis as
“relation-attribute’ pairs in the Test 1 database. Some of
the most frequent “relation-attribute” pairs among all
relations have shown in Table 4.

Number of Persons

10 10 10

Number of Links

Number of Persons

10 10 10

Number of Links

Number of Persons

10 L i
10 10 10

Number of Links

Figure 4. Frequency rank graph illustrating the
number of people vs. the number of in and out linksin
a log-log scale. Up: data belongs to real world database
and suggeststhe Zipf law distribution. The Middle and
lower graphs belong to synthetic data Test 1 and Test 2
respectively, which does not follow the Zipf law
distribution.

HASGENDER --> MALE

HAS-OCCUPATION --> CRIMINAL |

RESIDENCE --> RUSSIA |

COUNTRY-OF --> RUSSIA]
ISA --> KILLNG]
HAS-OCCUPATION --> BUSINESS |
RVAL -->
METHOD --> SHOOTING |
ISA --> GUN
OTHER-> |
ISA --> ORGANZATION 48 |
CITY-OF --> MOSCOW |
HAS-OCCUPATION --> OTHER |
ISA --> ORGANIZATION_ 8 |
ISA --> ORGANZATION 11 |
NATIONALITY --> RUSSIA
ISA --> LOCAL_GANG
HAS-OCCUPATION --> GOVERNMENT |
CITIZENSHIP--> RUSSIA
ISA --> OTHER
ISA --> ATTEMPTED_KILLING
NATIONALITY --> OTHER
ISA --> ORGANIZATION 7
HASGENDER --> FEMALE
ISA --> ORGANZATION_12
FIRSTNAME --> SERGEY
RESIDENCE --> UNITED_STATES
FIRSTNAME --> VLADIMR
NATIONALITY --> GEORGIA
ISA --> STREET
HAS-OCCUPATION -->
RESIDENCE --> UKRAINE
NATIONALITY --> UKRAINE
FIRSTNAME --> ALEXANDER
DOCUMENTATION --> NEWSPAPER
COUNTRY-OF --> UNITED_STATES
COUNTRY-OF --> UKRAINE
ISA --> ORGANZATION_46
ISA --> ORGANZATION_17
ISA --> APARTMENT_INSIDE
FIRSTNAME--> OLEG

ISA --> APARTMENT_OUTSIDE
HAS-OCCUPATION --> MILITARY
DOCUMENTATION --> BANK

””””””””””””””””””””””“““HUHNWW“““

o
al
o

100 150

200 250 300 350 400 450

Figure5: Distribution of number of relations-attributein RCK database.

Table 4: Most frequent Relation-Attributein RCK database.

Relation Attribute Freqg.
Has-Gender Male 384
Has-Occupation Crimina 204
Residence Russia 195
Country Of Russia 145
Isa Killing 120
Has-Occupation Business 89
Methods Shooting 82
Isa Gun 68
Isa Organization_48 61
City Of M oscow 57
Has-Occupation Other 51
Isa Organization 8 50
Isa Organization 11 44

Fig. 6 is a log-log plot with the x-axis as number of
relations-attribute. The distribution looks quiet faintly Zipf
distribution and suggests that some of the pairs are very
frequent such as “HASGENDER -> MALE’ and many of
them are very unpopular.

Activity Distribution

The second property of the RCK database we were
interested in, was the number of murders with respect to
individuals in datasets. In this case we were only interested
in counting attacked by and killed_by links. This means we
count the number of people who got killed (or attacked) by
a given person. Fig. 7 is alog-log plot with the x-axis as
number of links connected to each person. Again the
distribution looks faintly like a Zipf distribution and
suggests that the probability that a person has degree
d(i) (attacked by and killed_by) to attempt a murder is
proportional to the 1/(i)*, athough here the variations
seem larger

6. Conclusion

In this paper we studied some characteristics of real world
databases for the problem of Link Discovery. While the
implicit assumption in many data mining algorithm is that
the data is uniformly distributed, many databases in real
world applications violate this assumption. They are
skewed and exhibit fractal Zipf law distribution and /or
some other non-conventional distribution.

>
Q
c
(O]
>
o
o
LL
Number of Relations-Attribute
10°
10°
> SobHe
(&)
c +
] +
>
g 10" -
i v
HHHHH
10°
10 10 10 10 10 10
Number of Relations-Attribute
N
10°
.
>
o *
c
3
O t’%
O W
[T —-—
.2
10°

10" 10° 10° 10"
Number of Relations-Attribute

Figure 6: Frequency rank graph illustrating the
number of “relation-attribute’ pair vs. the frequency
of such item in alog-log scale. Up: data belongs to real
world database and suggests the Zipf law distribution.
The Middle and lower graphs belong to synthetic data
Test 1 and Test 2 respectively, which does not follow
the Zipf law distribution.

Number of Persons

Number of Links

Figure 7: Frequency rank graph illustrating the
number of “relation-attribute” pair (only killed and
killed-by) vs. the frequency of such item in a log-log
scale. Data is from Test 1 dataset and suggests the
Zipf law distribution.

Synthetic data are considered an important alternative to
real world databases. The following are the main factors
for such consideration:

e Privacy and security issues increase the need for
synthetic data for performance evaluation, algorithm
modification and tuning.

e A smulation engine provides powerful functionality
for filtering and corrupting data especially where
actual datais expected to have low observability.

For synthetic data to be useful it has to adequately
represent societal and individua attitudes and it has to be
similar enough to the real world data. To be more specific,
data distribution for variables has to be similar. As it
shown in some of the related work, those techniques which
perform successfully on simulated data may fail on real-
world datasets. A wide variety of knowledge discovery and
LD steps such as data sampling, data cleaning, pattern
recognition, dimension reduction, abstraction, visualization
etc. are directly related to data distribution. A true
representation of data enhances the capability of those
techniques when applied in real-world applications.

We illustrated that an example of areal world databases
(ak.a Russian Contract Killing (RCK)) are skewed and
exhibit Zipf law distribution and do not follow the
conventional assumption of Normal distribution. In
addition, we compared some of the characteristics of real-
world and simulated version of RCK and illustrated that
they have different distribution.

This report is a small part of an on going project. The
main focus of our effort is to provide a novel framework
for LD by combining knowledge representation and
reasoning technology with data mining and statistical
reasoning. However, as future work of this report, we

would like to do the same analysis for some other possible
available rea world data such as companies inside
information, publication-authors data and dynamic pricing
market data such as e-auction to anayze the data
characteristics in more details. In addition, we would like
to study the effect of such characteristics on design and to
evaluate performance of LD techniques which work
properly on synthetic data.

Acknowledgments. This work was supported by the
Defense Advance Research Projects Agency under Air
Force Research Laboratory contract F30602-01-2-0583.
The author would like to thank the KOJAK Team: Hans
Chalupsky, Tom Russ and Andre Valente for their
comments and support.

7. References

e Adamic, L. (2000). Zipf, power-laws, and pareto - a

ranking tutorial.
http://www.parc.xerox.com/istl/groups/iea/papersra
nking/ranking.html.

e Adibi, J, Shen, W-M. (2001). Self Similar Layered
Hidden Markov Model. 5th European Conference
on Principles and Practice of Knowledge Discovery
in Databases (PKDD'01), Freiburg, Germany.

e Burlaga, F., Klein, L. (1986). "Fractal structure of
the interplanetary magnetic." Journa of
Geophysical Research 91: 347-350.

e Cook, W., and O'Hayon, G. (2000). "Chronology of
Russian killings." Transnational Organized Crime
4(2).

e Dzeroski, S, and Lavrac, N., (2001). Relational
Data Mining. Berlin, Springer Verlag.

e Faloutsos, C. (2001). "Tutorial: Next generation
data mining tools, using SVD and fractals."
http://www-
2.cs.cmu.edu/afs/cs.cmu.edu/user/christoswww/TA
LKS/ICDE2001-tut/.

e Fayyad, U., Piatetsky Shapiro, G. P. Smyth, and

Uthurusuamy, R. (1996). Advances in knowledge
discovery and machine learning. Cambridge, MA,
AAAI/MIT Press.
Feder, J. (1988). Fractals. New Y ork, Plenum Press.
Hill, B. (1974). "The rank-frequency form of zipf 's
law." Journal of the American Statistical
Association, 69(338): 1017-1026.

e Hsu, K. a H., A. (1990). "Fracta Geometry of
Music." The National Academy of Science 87: 938-
941.

Koller, D., and Pfeffer, A (1998). Probabilistic
frame-based systems. 16th National Conference on
Artifial Intelligence, Madison, WI, AAAI Press /
The MIT Press.

Mandelbrot, B. (1965). "Self-smilar error clusters
in communications systems and the concept of
conditional systems and the concept of conditional
stationary." IEEE Transactions on Communications
Technology, 13: 71-90.

Mandelbrot, B. (1982). The Fractal Geometry of
Nature. San Francisco, W.H. Freeman and Co.
Mooney, R., Meville, P., Tang, R., Shavlik, J.,
Castro Dutra, 1., Page, D. and Santos Costa, V.
(2002). Relationa Data Mining with Inductive
Logic Programming for Link Discovery. The
National Science Foundation Workshop on Next
Generation Data Mining, Baltimore, MD.
Piatetsky-Shapiro, G., Brachman, R. Khabaza, T. ,
Kloesgen, W., Simoudis, E. (1996). An overview of
issues in developing Industrial data mining and
knowledge discovery applications,. Second
International Conference on Knowledge Discovery
and Data Mining.

Schroeder, M. (1991). Fractals, Chaos, Power Laws.
New York:, W.H. Freeman and Company,.

Senator, T. (2001). "Evidence Extraction and Link

Discovery."
Team, E. P. E,, Lead, |. P. E., and Powers, J. (2002).
Taskbased simulator version, Information

Extraction and Transport, Inc.

Williams, P. (2002). Patterns, indicators, and
warnings in link analysis. The contract killings
dataset., Veridian Systems Division.

Willinger, W., Taggu M. S., Sherman, W. and
Wilson, D. (1997). "Self-similarity through high
variability: datistical analysis of Ethernet LAN
traffic at the source level." IEEE/ACM Transactions
on Networking 5(1): 71-86.

Zheng, Z., Kohavi, R. and Mason, L. (2001). Rea
World Performance of Association Rule
Algorithms. The Seventh International Conference
on Knowledge Discovery and Data Mining.
Zhigiang, B., Christos F.and Flip K. (2001). The
"DGX" Didtribution for Mining Massive, Skewed
Data. The Seventh International Conference on
Knowledge Discovery and Data Mining, San
Francisco, CA.

